ZHANG Bin, ZHANG Fei, ZHOU Feng, SHANG Weiwei, CONG Shuang. Dual-space Adaptive Synchronization Control of Cable-driven Parallel Robots[J]. ROBOT, 2020, 42(2): 139-147. DOI: 10.13973/j.cnki.robot.190488
Citation: ZHANG Bin, ZHANG Fei, ZHOU Feng, SHANG Weiwei, CONG Shuang. Dual-space Adaptive Synchronization Control of Cable-driven Parallel Robots[J]. ROBOT, 2020, 42(2): 139-147. DOI: 10.13973/j.cnki.robot.190488

Dual-space Adaptive Synchronization Control of Cable-driven Parallel Robots

More Information
  • Received Date: September 08, 2019
  • Revised Date: October 23, 2019
  • Available Online: October 26, 2022
  • Published Date: March 14, 2020
  • The main challenge of cable-driven parallel robots (CDPRs) stems from the motion control in which cables should keep in tension and coordinate each other during motion. Moreover, the uncertain model parameters also should be considered due to their influences on the motion control to some extent. To solve the above problems, a novel dual-space adaptive synchronization control (DASC) scheme is proposed to combine the adaptive synchronization in the cable length space with the adaptive compensation in the workspace. In the DASC scheme, the cable synchronization error is presented to represent the coordination motion relation among cables, and a dual-space adaptive method is then developed to compensate for the uncertain model parameters in different spaces in real time. The stability of the closed-loop system with the DASC scheme is proved strictly. The experimental results indicate that, compared with the traditional augmented PD (APD) control scheme, the DASC scheme can greatly improve the tracking accuracy of cables and the coordination relation among cables, and eventually increase the control accuracy of the mobile platform. Meanwhile, the adaptive effect in the DASC scheme can effectively compensate for the impact of the mass change of the terminal mobile platform.
  • [1]
    Qian S, Zi B, Shang W W, et al. A review on cable-driven parallel robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1):66.
    [2]
    Lu B, Fang Y C, Sun N, et al. Antiswing control of offshore boom cranes with ship roll disturbances[J]. IEEE Transactions on Control Systems Technology, 2018, 26(2):740-747.
    [3]
    王文杰,于凌涛,杨景,等.基于关节转角估计器的绳驱动手术微器械位置全闭环控制[J].机器人,2018,40(2):231-239.

    Wang W J, Yu L T, Yang J, et al. Full closed-loop position control of the surgical cable-driven micromanipulator based on joint angle estimator[J]. Robot, 2018, 40(2):231-239.
    [4]
    宋达,张立勋,王炳军,等.柔索牵引式力觉交互机器人控制策略[J].机器人,2018,40(4):440-447.

    Song D, Zhang L X, Wang B J, et al. The control strategy of flexible cable driven force interactive robot[J]. Robot, 2018, 40(4):440-447.
    [5]
    张立勋,李来禄,姜锡泽,等.柔索驱动的宇航员深蹲训练机器人力控与实验研究[J].机器人,2017,39(5):733-741.

    Zhang L X, Li L L, Jiang X Z, et al. Force control and experimental study of a cable-driven robot for astronaut deep squat training[J]. Robot, 2017, 39(5):733-741.
    [6]
    南仁东,姜鹏.500m口径球面射电望远镜(FAST)[J].机械工程学报,2017,53(17):1-3.

    Nan R D, Jiang P. Five-hundred-meter aperture spherical radio telescope (FAST)[J]. Journal of Mechanical Engineering,2017,53(17):1-3.
    [7]
    Oh S R, Agrawal S K. A reference governor-based controller for a cable robot under input constraints[J]. IEEE Transactions on Control Systems Technology, 2005, 13(4):639-645.
    [8]
    Caverly R J, Forbes J R. Flexible cable-driven parallel manipulator control:Maintaining positive cable tensions[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5):1874-1883.
    [9]
    Babaghasabha R, Khosravi M A, Taghirad H D. Adaptive robust control of fully-constrained cable driven parallel robots[J]. Mechatronics, 2015, 25(1):27-36.
    [10]
    Fang S Q, Franitza D, Torlo M, et al. Motion control of a tendon-based parallel manipulator using optimal tension distribution[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3):561-568.
    [11]
    Gouttefarde M, Lamaury J, Reichert C, et al. A versatile tension distribution algorithm for n-DOF parallel robots driven by n+2 cables[J]. IEEE Transactions on Robotics, 2015, 31(6):1444-1457.
    [12]
    Kozak K, Zhou Q, Wang J S. Static analysis of cable-driven manipulators with non-negligible cable mass[J]. IEEE Transactions on Robotics, 2006, 22(3):425-433.
    [13]
    孙海宁,唐晓强,王晓宇,等.基于索驱动的大型柔性结构振动抑制策略研究[J].机械工程学报,2019,55(11):53-60.

    Sun H N, Tang X Q, Wang X Y, et al. Vibration suppression of large flexible structure based on cable-driven parallel robots[J]. Journal of Mechanical Engineering, 2019, 55(11):53-60.
    [14]
    欧阳波,尚伟伟.6自由度绳索驱动并联机器人力封闭工作空间的快速求解方法[J].机械工程学报,2013,49(15):34-41.

    Ouyang B, Shang W W. Efficient computation method of force-closure workspace for 6-DOF cable-driven parallel manipulators[J]. Journal of Mechanical Engineering, 2013, 49(15):34-41.
    [15]
    Shang W W, Zhang B Y, Zhang B, et al. Synchronization control in the cable space for cable-driven parallel robots[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6):4544-4554.
    [16]
    Khosravi M A, Taghirad H D. Robust PID control of fully-constrained cable-driven parallel robots[J]. Mechatronics, 2014, 24(2):87-97.
    [17]
    Asl H J, Yoon J. Robust trajectory tracking control of cable-driven parallel robot[J]. Nonlinear Dynamics, 2017, 89(4):2769-2784.
    [18]
    Jamshidifar H, Khosravani S, Fidan B, et al. Vibration decoupled modeling and robust control of redundant cable-driven parallel robots[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):690-701.
    [19]
    Kino H, Yahiro T, Takemura F, et al. Robust PD control using adaptive compensation for completely restrained parallel-wire driven robots:Translational systems using the minimum number of wires under zero-gravity condition[J]. IEEE Transactions on Robotics, 2007, 23(4):803-812.
    [20]
    El-Ghazaly G, Gouttefarde M, Creuze V. Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator:CoGiRo[M]//Cable-driven Parallel Robots. Cham, Switzerland:Springer, 2015:179-200.
    [21]
    Khosravi M A, Taghirad H D. Dynamic modeling and control of parallel robots with elastic cables:Singular perturbation approach[J]. IEEE Transactions on Robotics, 2014, 30(3):694-704.
    [22]
    Slotine J-J E, Li W P. Applied nonlinear control[M]. Englewood Cliffs, USA:Prentice Hall, 1991.
    [23]
    Cheng C, Xu W L, Shang J Z. Distributed-torque-based independent joint tracking control of a redundantly actuated parallel robot with two higher kinematic pairs[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):1062-1070.
  • Related Articles

    [1]DIAO Shuzhen, ZHANG Xinlin, LIU Gendi, QIN Yanding, FANG Yongchun, SUN Ning. Hysteresis Inverse Compensation-based Synchronous Control for a Pneumatic Artificial Muscle-actuated Parallel Robot[J]. ROBOT, 2025, 47(2): 145-154. DOI: 10.13973/j.cnki.robot.240158
    [2]ZHOU Bowen, ZHANG Haifeng, LI Qinchuan. Adaptive Sliding-mode Iterative Learning Control for 2R1T Parallel Robots[J]. ROBOT, 2024, 46(3): 317-329. DOI: 10.13973/j.cnki.robot.230283
    [3]ZHANG Xing, BAI YongQiang, XIN Bin, CHEN Jie. Differential Evolution Based Receding Horizon Control for UAV Motion Planning in Dynamic Environments[J]. ROBOT, 2013, 35(1): 107-114. DOI: 10.3724/SP.J.1218.2013.00107
    [4]ZHANG Lixun, LIU Pan, WANG Keyi. Virtual-Gravity Control of a Wire-driven Cosmonaut-Enginery-Training Robot[J]. ROBOT, 2010, 32(4): 454-458,463.
    [5]LAN Tian, LIU Yiwei, CHEN Yangbin, JIN Minghe, JIANG Li, FAN Shaowei, LIU Hong. Synchronized Cross-coupled Control for Base Joint of Dexterous Robot Hand[J]. ROBOT, 2010, 32(2): 150-156,165.
    [6]FAN Wei, PENG Guang-zheng, GAO Jian-ying, NING Ru-xin. Study on the Force Control of a Spherical Parallel Robot Actuated by Pneumatic Muscle Actuators[J]. ROBOT, 2004, 26(4): 336-341.
    [7]YANG Hao-quan, ZHAO Ke-ding, WU Sheng-lin. Control Strategy of a Hydraulic 6-DOF Parallel Robot[J]. ROBOT, 2004, 26(3): 263-266,271.
    [8]SUN Lining, XU Wenjun, CAI Hegao. STUDY OF FUZZY CMAC NEURAL NETWORK BASED ADAPTIVE FORCE CONTROL OF-PARALLEL ROBOTS[J]. ROBOT, 1999, 21(3): 198-203.
    [9]GAO Yingjie, WAN Yiqun. THE FUZZY LINEAR COMBINATION CONTROL FOR THE ELECTRO-HYDRAULIC VELOCITY CONTROL SYSTEM OF PARALLEL ROBOT[J]. ROBOT, 1996, 18(3): 163-166,172.
    [10]WANG Hongrui, HOU Zenggtiang, SONG Weigong. STUDY ON THE TRAJECTORY FOLLOWING OF A PARALLEL ROBOT USING VARIABLE STRUCTURE CONTROL[J]. ROBOT, 1995, 17(2): 65-69.
  • Cited by

    Periodical cited type(7)

    1. 尹田,刘芳华. 自适应绳索驱动并联机器人构型优化设计研究. 机床与液压. 2024(15): 62-68 .
    2. 钱森,李长奇,周斌,訾斌. 柔索驱动机器人运动规划与控制方法研究综述. 控制与决策. 2024(09): 2817-2832 .
    3. 朱俊鹏,葛馨远,谢睿,周煜. 涂覆并联机器人轨迹跟踪同步控制策略研究. 机床与液压. 2024(21): 71-78 .
    4. 张铁,曹亚超,邹焱飚,马广才,梅雪川. 具有线性位置解的3-CRU并联机器人轨迹跟踪. 华中科技大学学报(自然科学版). 2023(06): 16-22 .
    5. 何永勃,赵宝玺. 室内四索牵引定位与索长求解. 中国民航大学学报. 2022(05): 39-44 .
    6. 李国江,张飞,李露,尚伟伟,陶猛. 基于多种群协同进化算法的绳索牵引并联机器人末端位置误差补偿. 机器人. 2021(01): 81-89 . 本站查看
    7. 宋国栋,魏立科,马宏伟,付霁野,刘希梁. 六轴式小臂机器人运动学理论研究及其在掘锚作业中的应用. 煤炭学报. 2021(S2): 1114-1123 .

    Other cited types(20)

Catalog

    Article views (162) PDF downloads (458) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return