面向非连续性地面的双足欠驱动步行稳定控制

姚渊, 姚道金, 肖晓晖, 王杨

姚渊, 姚道金, 肖晓晖, 王杨. 面向非连续性地面的双足欠驱动步行稳定控制[J]. 机器人, 2017, 39(5): 742-750. DOI: 10.13973/j.cnki.robot.2017.0742
引用本文: 姚渊, 姚道金, 肖晓晖, 王杨. 面向非连续性地面的双足欠驱动步行稳定控制[J]. 机器人, 2017, 39(5): 742-750. DOI: 10.13973/j.cnki.robot.2017.0742
YAO Yuan, YAO Daojin, XIAO Xiaohui, WANG Yang. Stable Control of Underactuated Biped Walking on Discontinuous Ground[J]. ROBOT, 2017, 39(5): 742-750. DOI: 10.13973/j.cnki.robot.2017.0742
Citation: YAO Yuan, YAO Daojin, XIAO Xiaohui, WANG Yang. Stable Control of Underactuated Biped Walking on Discontinuous Ground[J]. ROBOT, 2017, 39(5): 742-750. DOI: 10.13973/j.cnki.robot.2017.0742
姚渊, 姚道金, 肖晓晖, 王杨. 面向非连续性地面的双足欠驱动步行稳定控制[J]. 机器人, 2017, 39(5): 742-750. CSTR: 32165.14.robot.2017.0742
引用本文: 姚渊, 姚道金, 肖晓晖, 王杨. 面向非连续性地面的双足欠驱动步行稳定控制[J]. 机器人, 2017, 39(5): 742-750. CSTR: 32165.14.robot.2017.0742
YAO Yuan, YAO Daojin, XIAO Xiaohui, WANG Yang. Stable Control of Underactuated Biped Walking on Discontinuous Ground[J]. ROBOT, 2017, 39(5): 742-750. CSTR: 32165.14.robot.2017.0742
Citation: YAO Yuan, YAO Daojin, XIAO Xiaohui, WANG Yang. Stable Control of Underactuated Biped Walking on Discontinuous Ground[J]. ROBOT, 2017, 39(5): 742-750. CSTR: 32165.14.robot.2017.0742

面向非连续性地面的双足欠驱动步行稳定控制

基金项目: 

国家自然科学基金(51675385)

详细信息
    作者简介:

    姚渊(1993-),男,硕士生.研究领域:仿生机器人,柔性驱动器.

    姚道金(1990-),男,博士生.研究领域:双足步行稳定控制,仿生机器人.

    肖晓晖(1969-),女,教授,博士生导师.研究领域:机械系统动力学,非线性系统运动控制,微!/!纳定位系统控制.

    通信作者:

    肖晓晖,xhxiao@whu.edu.cn

  • 中图分类号: TP242

Stable Control of Underactuated Biped Walking on Discontinuous Ground

  • 摘要: 为实现双足机器人在真实非连续地面上的欠驱动稳定步行,基于自适应前馈控制算法提出一种变步长稳定步行控制策略.首先,针对机器人步行速度、稳定性以及质心运动轨迹的映射关系,引出一种基于质心运动状态的单输入-单输出自适应前馈控制算法,实现机器人在真实地面上的稳定步行.其次,从步行仿人性的角度出发,为消除地面非连续性对步行稳定性的影响,通过改变步长和质心理想跟踪速度设计变步长稳定步行控制策略,实现欠驱动双足步行机器人在真实非连续地面上的稳定步行.最后,通过对四连杆机器人模型的数值仿真,以及在木板和橡胶混合地面上的机器人样机试验,验证变步长稳定步行控制策略的有效性.试验结果表明:本文提出的变步长稳定步行控制策略能够实现在真实非连续地面上的欠驱动稳定步行.
    Abstract: In order to achieve underactuated stable walking of the biped robot on a discontinuous real ground, a variable step-length stabilized control strategy based on the adaptive feedforward control algorithm is proposed. Firstly, a single-input and single-output adaptive feedforward controller based on CoM (centre of mass) motion state is introduced according to the mapping relationship between robot walking speed, stability and CoM trajectory, to realize stable walking on the real ground. Secondly, a variable step-length stabilized control strategy is proposed from the view of imitating human walking, in order to eliminate the influence of the ground discontinuity on walking stability. The underactuated biped robot can walk stably on the real discontinuous ground by changing the step length and the ideal tracking speed of CoM. Finally, the validity of the variable step-length stabilized control strategy is verified by numerical simulation of the four-link robot model and the prototype experiment on the mixed wood/rubber ground. The experimental results show that the proposed variable step-length strategy can achieve underactuated stable walking on the real discontinuous ground.
  • [1] 梶田秀司.仿人机器人[M].北京:清华大学出版社,2007.Kajita S. Humanoid robot[M]. Beijing:Tsinghua University Press, 2007.
    [2] 毛勇,王家廞,贾培发,等.双足被动步行研究综述[J].机器人,2007,29(3):274-280.

    Mao Y, Wang J X, Jia P F, et al. Passive dynamic biped walking:A survey[J]. Robot, 2007, 29(3):274-280.

    [3]

    Chevallereau C, Grizzle J W, Shih C L. Asymptotically stable walking of a five-link underactuated 3-D bipedal robot[J]. IEEE Transactions on Robotics, 2009, 25(1):37-50.

    [4]

    Yadukumar S N, Pasupuleti M, Ames A D. Human-inspired underactuated bipedal robotic walking with amber on flat-ground, up-slope and uneven terrain[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:2478-2483.

    [5] 付成龙,黄元林,王健美,等.半被动双足机器人的准开环控制[J].机器人,2009,31(2):110-117,123.Fu C L, Huang Y L, Wang J M, et al. Quasi open-loop control for semi-passive biped robots[J]. Robot, 2009, 31(2):110-117, 123.
    [6]

    Aguilar J, Goldman D I. Robophysical study of jumping dynamics on granular media[J]. Nature Physics, 2016, 12(3):278-283.

    [7]

    Manchester I R, Mettin U, Iida F, et al. Stable dynamic walking over uneven terrain[J]. International Journal of Robotics Research, 2011, 30(3):265-279.

    [8]

    Park H W, Ramezani A, Grizzle J W. A finite-state machine for accommodating unexpected large ground-height variations in bipedal robot walking[J]. IEEE Transactions on Robotics, 2013, 29(2):331-345.

    [9]

    Hyon S H. Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces[J]. IEEE Transactions on Robotics, 2009, 25(1):171-178.

    [10]

    Westervelt E R, Buche G, Grizzle J W. Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds[J]. International Journal of Robotics Research, 2004, 23(6):559-582.

    [11]

    Sreenath K, Park H W, Poulakakis I, et al. A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL[J]. International Journal of Robotics Research, 2011, 30(9):1170-1193.

    [12]

    Wang Y, Ding J T, Xiao X H. An adaptive feedforward control method for under-actuated bipedal walking on the compliant ground[J]. International Journal of Robotics and Automation, 2017, 32(1):63-77.

    [13]

    Hodgins J K, Raibert M H. Adjusting step length for rough terrain locomotion[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3):289-298.

    [14]

    Yang L, Chew C M, Poo A N, et al. Autonomous stride-frequency and step-length adjustment for bipedal walking control[M]//Autonomous Robots and Agents. Berlin, Germany:Springer, 2007:189-198.

    [15]

    Hu Y, Yan G F, Lin Z Y. Feedback control of planar biped robot with regulable step length and walking speed[J]. IEEE Transactions on Robotics, 2011, 27(1):162-169.

    [16]

    Freeman P S, Orin D E. Efficient dynamic simulation of a quadruped using a decoupled tree-structure approach[J]. International Journal of Robotics Research, 1991, 10(6):619-627.

    [17]

    Westervelt E R, Grizzle J W, Chevallereau C, et al. Feedback control of dynamic bipedal robot locomotion[M]. Boca Raton, USA:CRC Press, 2007.

    [18]

    Grizzle J W, Chevallereau C, Sinnet R W, et al. Models, feedback control, and open problems of 3D bipedal robotic walking[J]. Automatica, 2014, 50(8):1955-1988.

    [19]

    Stronge W J, James R, Ravani B. Oblique impact with friction and tangential compliance[J]. Philosophical Transactions of the Royal Society, A:Mathematical, Physical and Engineering Sciences, 2001, 359(1789):2447-2465.

计量
  • 文章访问数:  70
  • HTML全文浏览量:  669
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭