室内通风环境下基于模拟退火算法的单机器人气味源定位

王阳, 孟庆浩, 李腾, 曾明

王阳, 孟庆浩, 李腾, 曾明. 室内通风环境下基于模拟退火算法的单机器人气味源定位[J]. 机器人, 2013, 35(3): 283-291. DOI: 10.3724/SP.J.1218.2013.00283
引用本文: 王阳, 孟庆浩, 李腾, 曾明. 室内通风环境下基于模拟退火算法的单机器人气味源定位[J]. 机器人, 2013, 35(3): 283-291. DOI: 10.3724/SP.J.1218.2013.00283
WANG Yang, MENG Qinghao, LI Teng, ZENG Ming. Single-Robot Odor Source Localization in a Ventilated Indoor Environment Using Simulated Annealing Algorithm[J]. ROBOT, 2013, 35(3): 283-291. DOI: 10.3724/SP.J.1218.2013.00283
Citation: WANG Yang, MENG Qinghao, LI Teng, ZENG Ming. Single-Robot Odor Source Localization in a Ventilated Indoor Environment Using Simulated Annealing Algorithm[J]. ROBOT, 2013, 35(3): 283-291. DOI: 10.3724/SP.J.1218.2013.00283
王阳, 孟庆浩, 李腾, 曾明. 室内通风环境下基于模拟退火算法的单机器人气味源定位[J]. 机器人, 2013, 35(3): 283-291. CSTR: 32165.14.robot.2013.00283
引用本文: 王阳, 孟庆浩, 李腾, 曾明. 室内通风环境下基于模拟退火算法的单机器人气味源定位[J]. 机器人, 2013, 35(3): 283-291. CSTR: 32165.14.robot.2013.00283
WANG Yang, MENG Qinghao, LI Teng, ZENG Ming. Single-Robot Odor Source Localization in a Ventilated Indoor Environment Using Simulated Annealing Algorithm[J]. ROBOT, 2013, 35(3): 283-291. CSTR: 32165.14.robot.2013.00283
Citation: WANG Yang, MENG Qinghao, LI Teng, ZENG Ming. Single-Robot Odor Source Localization in a Ventilated Indoor Environment Using Simulated Annealing Algorithm[J]. ROBOT, 2013, 35(3): 283-291. CSTR: 32165.14.robot.2013.00283

室内通风环境下基于模拟退火算法的单机器人气味源定位

详细信息
    作者简介:

    王 阳(1985-),男,博士生.研究领域:移动机器人主动嗅觉.
    孟庆浩(1968-),男,博士,教授.研究领域:自主机器人感知、导航与控制,机器嗅觉,移动传感器网络.
    李 腾(1988-),男,硕士生.研究领域:移动机器人主动嗅觉,电子鼻.

    通信作者:

    孟庆浩,qh_meng@tju.edu.cn

  • 中图分类号: TP24

Single-Robot Odor Source Localization in a Ventilated Indoor Environment Using Simulated Annealing Algorithm

  • 摘要: 针对室内通风环境下的气味源定位问题,提出了一种基于模拟退火策略的单机器人气味源定位算法.受流场的控制,室内气味源释放的烟羽除了具有蜿蜒和间歇特性外, 还会在涡流区域形成局部浓度极大值.本文将气味源定位看作是一种动态函数寻优问题,使用模拟退火策略求取浓度分布函数的最优解,即气味源所在位置. 算法不依赖风信息,从而可以减少流场波动造成的影响.同时通过研究气味浓度与气味源距离之间的关系,提出了一种与气味源距离呈近似线性关系的模拟退火目标函数. 真实室内通风环境下的实验表明,使用本文提出的算法,机器人能够在8m×6m区域内跟踪烟羽并定位气味源,平均定位时间约为10min,且在搜索过程中可以有效地跳出局部极大值.
    Abstract: Aiming at the odor source localization in a ventilated indoor environment, a simulated annealing based odor source localization algorithm for a single robot is proposed. Dominated by the flow field, the plume released from an odor source in the room is meandering and intermittent. Moreover, the local concentration maxima may appear in the eddy areas. In this paper, the odor source localization is regarded as a dynamic function optimization problem. The simulated annealing strategy is used to obtain the optimal solution of the concentration distribution function, namely the location of the odor source. The algorithm doesn't need the wind information, so the influence of the flow-field fluctuation is reduced. The relationship between odor concentration and odor-source distance is also studied, and an objective function for simulated annealing that is approximately linear with the odor source distance is presented. The experiments in an actual ventilated indoor environment show that the robot using the proposed method can trace the dynamic odor plume and eventually declare the odor source in an 8m×6m region, and the average localization time is about 10 min. In the search process, the robot is able to jump out of the local maxima effectively.
  • [1] Bhalla U S, Bower J M. Multiday recordings from olfactory bulb neurons in awake freely moving rats: Spatially and temporally organized variability in odorant response properties[J]. Journal of Computational Neuroscience, 1997, 4(3): 221-256.  
    [2] Johnsen P B. New directions in fish orientation studies[M]// Signposts in the Sea. USA: Florida State University, 1987: 85-101.
    [3] Johnsen P B, Teeter J H. Behavioral responses of bonnethead sharks (Sphyrna tiburo) to controlled olfactory stimulation[J]. Marine Behaviour and Physiology, 1985, 11(4): 283-291.  
    [4] Atema J. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors[J]. Biological Bulletin, 1996, 191(1): 129-138.  
    [5] Kowadlo G, Russell R A. Robot odor localization: A taxonomy and survey[J]. International Journal of Robotics Research, 2008, 27(8): 869-894.  
    [6] 孟庆浩,李飞.主动嗅觉研究现状[J].机器人,2006,28(1):89-96. Meng Q H, Li F. Review of active olfaction[J]. Robot, 2006, 28(1): 89-96.
    [7] Hayes A T, Martinoli A, Goodman R M. Distributed odor source localization[J]. IEEE Sensors Journal, 2002, 2(3): 260-271.  
    [8] Holland O, Melhuish C. Some adaptive movements of animats with single symmetrical sensors[C]//Fourth International Conference on Simulation of Adaptive Behaviour from Animals to Animats. Cambridge, MA, USA: MIT Press, 1996: 55-64.
    [9] Lytridis C, Virk G S, Rebour Y, et al. Odor-based navigational strategies for mobile agents[J]. Adaptive Behavior, 2001, 9(3/4): 171-187.
    [10] Pasternak Z, Bartumeus F, Grasso F W. Levy-taxis: A novel search strategy for finding odor plumes in turbulent flow-dominated environments[J]. Journal of Physics, A: Mathematical and Theoretical, 2009, 42(43): 434010.
    [11] Li W, Farrell J A, Pang S, et al. Moth-inspired chemical plume tracing on an autonomous underwater vehicle[J]. IEEE Transactions on Robotics, 2006, 22(2): 292-307.  
    [12] Russell R A, Bab-Hadiashar A, Shepherd R L, et al. A comparison of reactive robot chemotaxis algorithms[J]. Robotics and Autonomous Systems, 2003, 45(2): 83-97.  
    [13] 张小俊,张明路,孟庆浩,等.一种基于动物捕食行为的机器人气味源定位策略[J].机器人,2008,30(3):268-272. Zhang X J, Zhang M L, Meng Q H, et al. A gas/odor source localization strategy for mobile robot based on animal predatory behavior[J]. Robot, 2008, 30(3): 268-272.
    [14] Hernandez Bennetts V, Lilienthal A J, Neumann P P, et al. Mobile robots for localizing gas emission sources on landfill sites: Is bio-inspiration the way to go?[J]. Frontiers in Neuroengineering, 2011, 4: 20.
    [15] Vergassola M, Villermaux E, Shraiman B I. 'Infotaxis' as a strategy for searching without gradients[J]. Nature, 2007, 445(7126): 406-409.  
    [16] Moraud E M, Martinez D. Effectiveness and robustness of robot infotaxis for searching in dilute conditions[J]. Frontiers in Neurorobotics, 2010, 4: 1.
    [17] Zarzhitsky D V, Spears D F, Thayer D R. Experimental studies of swarm robotic chemical plume tracing using computational fluid dynamics simulations[J]. International Journal of Intelligent Computing and Cybernetics, 2010, 3(4): 631-671.  
    [18] Kowadlo G, Russell R A. Improving the robustness of na\"ive physics airflow mapping, using Bayesian reasoning on a multiple hypothesis tree[J]. Robotics and Autonomous Systems, 2009, 57(6/7): 723-737.
    [19] Liang L, Li J P, Jia J, et al. A new approach to biomimetic robots for odor source localization[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA: IEEE, 2006: 840-845.
    [20] 王俭,季剑岚,陈卫东.基于行为特征的机器人变步长气味源搜索算法[J].系统仿真学报,2009,21(17):5427-5430,5435. Wang J, Ji J L, Chen W D. Behavior-feature-based dynamic variant step-size odor search algorithm for mobile\columnbreak robot[J]. Journal of System Simulation, 2009, 21(17): 5427-5430,5435.
    [21] 骆德汉,邹宇华,庄家俊.基于修正蚁群算法的多机器人气味源定位策略研究[J].机器人,2008,30(6):536-541. Luo D H, Zou Y H, Zhuang J J. Multi-robot odor source localization strategy based on a modified ant colony algorithm[J]. Robot, 2008, 30(6): 536-541.
    [22] Li J G, Meng Q H, Li F, et al. Tracing odor plume by robot in time-variant flow-field environments[J]. Acta Automatica Sinica, 2009, 35(10): 1327-1333.  
    [23] Ishida H, Nakamoto T, Moriizumi T. Remote sensing of gas: Odor source location and concentration distribution using mobile system[J]. Sensors and Actuators, B, 1998, 49(1/2): 52-57.
    [24] Pang S, Farrell J A. Chemical plume source localization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(5): 1068-1080.  
    [25] Li J G, Meng Q H, Wang Y, et al. Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm[J]. Autonomous Robots, 2011, 30(3): 281-292.  
    [26] Farrell J A, Murlis J, Long X Z, et al. Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes[J]. Environmental Fluid Mechanics, 2002, 2(1/2): 143-169.  
    [27] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092.  
    [28] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.  
    [29] 康立山,谢云,尤矢勇,等.非数值并行算法:模拟退火算法[M].北京:科学出版社,1994. Kang L S, Xie Y, You S Y, et al. Non-numerical parallel algorithm: Simulated annealing algorithm [M]. Beijing: Science Press, 1994.
    [30] Li W, Farrell J A, Carde R T. Tracking of fluid-advected odor plumes: Strategies inspired by insect orientation to pheromone[J]. Adaptive Behavior, 2001, 9(3/4): 143-170.
计量
  • 文章访问数:  47
  • HTML全文浏览量:  1212
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-26

目录

    /

    返回文章
    返回
    x 关闭 永久关闭