基于路径边沿引导策略的蛇形机器人路径跟踪方法

张丹凤

张丹凤. 基于路径边沿引导策略的蛇形机器人路径跟踪方法[J]. 机器人, 2021, 43(1): 36-43. DOI: 10.13973/j.cnki.robot.200098
引用本文: 张丹凤. 基于路径边沿引导策略的蛇形机器人路径跟踪方法[J]. 机器人, 2021, 43(1): 36-43. DOI: 10.13973/j.cnki.robot.200098
ZHANG Danfeng. A Path Tracking Method for the Snake Robot Based on the Path Edge Guidance Strategy[J]. ROBOT, 2021, 43(1): 36-43. DOI: 10.13973/j.cnki.robot.200098
Citation: ZHANG Danfeng. A Path Tracking Method for the Snake Robot Based on the Path Edge Guidance Strategy[J]. ROBOT, 2021, 43(1): 36-43. DOI: 10.13973/j.cnki.robot.200098
张丹凤. 基于路径边沿引导策略的蛇形机器人路径跟踪方法[J]. 机器人, 2021, 43(1): 36-43. CSTR: 32165.14.robot.200098
引用本文: 张丹凤. 基于路径边沿引导策略的蛇形机器人路径跟踪方法[J]. 机器人, 2021, 43(1): 36-43. CSTR: 32165.14.robot.200098
ZHANG Danfeng. A Path Tracking Method for the Snake Robot Based on the Path Edge Guidance Strategy[J]. ROBOT, 2021, 43(1): 36-43. CSTR: 32165.14.robot.200098
Citation: ZHANG Danfeng. A Path Tracking Method for the Snake Robot Based on the Path Edge Guidance Strategy[J]. ROBOT, 2021, 43(1): 36-43. CSTR: 32165.14.robot.200098

基于路径边沿引导策略的蛇形机器人路径跟踪方法

基金项目: 

辽宁石油化工大学博士科研启动项目(2016XJJ-021).

详细信息
    作者简介:

    张丹凤(1984-),女,博士,讲师.研究领域:机器人建模,机器人控制.

    通信作者:

    张丹凤,zhangdanfeng9021@sina.cn

  • 中图分类号: TP242.6

A Path Tracking Method for the Snake Robot Based on the Path Edge Guidance Strategy

  • 摘要: 为了控制蛇形机器人在路径边沿的引导下沿着期望路径运动,在基于角度对称性调节的方向控制方法的基础上,提出路径边沿引导策略.随着蛇形机器人的运动,路径的2个边沿交替作为有效边沿.利用传感器检测有效边沿,根据有效边沿获得临时目标点.临时目标点随着机器人的运动沿有效边沿不断更新.不断更新的临时目标点确定了路径的延伸方向.将临时目标点引入方向控制参数,从而使机器人根据路径边沿调节运动方向.仿真显示蛇形机器人能够在摩擦系数未知的地面上根据路径边沿调整运动方向.仿真结果验证该方法不仅能实现蛇形机器人跟踪期望路径,而且能实现蛇形机器人跟踪期望路径的中心线.
    Abstract: In order to steer the snake robot along the desired path guided by path edges, a path edge based guidance strategy is proposed by applying a direction control method based on the angle symmetry adjustment. The effective edge is constantly exchanged between two path edges as the snake robot moves. The effective edge is detected by a sensor, and is utilized to obtain the temporary target point, which is updated along the effective edge as the robot moves. The path direction is determined by the constantly updated temporary target point. So the snake robot can adjust the locomotion direction according to path edges by introducing the temporary target point into the direction control parameter. Simulations show that the snake robot can adjust the locomotion direction on the ground with unknown friction coefficients according to the path edge. It is verified that the snake robot can not only follow the desired path, but also follow the centerline of desired path.
  • [1]

    Yamada H, Hirose S. Study on the 3D shape of active cord mechanism[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2006. DOI: 10.1109/ROBOT.2006.1642140.

    [2]

    Hatton R L, Choset H. Sidewinding on slopes[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010. DOI: 10.1109/ROBOT.2010.5509875.

    [3]

    Hatton R L, Choset H. Generating gaits for snake robots:Annealed chain fitting and keyframe wave extraction[J]. Autonomous Robots, 2010, 28(3):271-281.

    [4] 王智锋,马书根,李斌,等. 基于能量的蛇形机器人蜿蜒运动控制方法的仿真与实验研究[J].自动化学报, 2011, 7(5):604-614.

    Wang Z F, Ma S G, Li B, et al. Simulation and experimental study of an energy-based control method for the serpentine locomotion of a snake-like robot[J]. Acta Automatica Sinica, 2011, 37(5):604-614.

    [5]

    Liljeback P, Pettersen K Y, Stavdahl Ø, et al. A simplified model of planar snake robot locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2010. DOI: 10.1109/IROS.2010.5649110.

    [6]

    Liljeback P, Pettersen K Y. Waypoint guidance control of snake robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011. DOI: 10.1109/ICRA.2011.5979565.

    [7]

    Liljeback P, Haugstuen I U, Pettersen K Y. Path following control of planar snake robots using a cascaded approach[C]//49th IEEE Conference on Decision and Control. Piscataway, USA:IEEE, 2010. DOI: 10.1109/CDC.2010.5717823.

    [8]

    Rezapour E, Pettersen K Y, Gravdahl J T, et al. Formation control of underactuated bio-inspired snake robots[J]. Artificial Life and Robotics, 2016, 21(3):282-294.

    [9]

    Kohl A M, Pettersen K Y, Kelasidi E, et al. Planar path following of underwater snake robots in the presence of ocean currents[J]. IEEE Robotics and Automation Letters, 2016, 1(1):383-390.

    [10]

    Kelasidi E, Liljeback P, Pettersen K Y, et al. Integral lineof-sight guidance for path following control of underwater snake robots:Theory and experiments[J]. IEEE Transactions on Robotics, 2017, 33(3):610-628.

    [11]

    Hasanabadi E, Mahjoob M J. Trajectory tracking of a planar snake robot using camera feedback[C]//2nd International Conference on Control, Instrumentation and Automation. Piscataway, USA:IEEE, 2011. DOI:10.1109/ICCIAutom.2011. 6356780.

    [12]

    Mohammadi A, Rezapour E, Maggiore M, et al. Maneuvering control of planar snake robots using virtual holonomic constraints[J]. IEEE Transactions on Control Systems Technology, 2016, 24(3):884-899.

    [13]

    Ariizumi R, Takahashi R, Tanaka M, et al. Head-trajectorytracking control of a snake robot and its robustness under actuator failure[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6):2589-2597.

    [14]

    Wang J, Qiu X L, Liu Z Z, et al. Path tracking of snake-like robot based on neural network identifier[C]//IEEE 4th International Conference on Advanced Robotics and Mechatronics. Piscataway, USA:IEEE, 2019. DOI: 10.1109/ICARM.2019.8834017.

    [15] 李东方,邓宏彬,潘振华,等. 基于改进蛇形曲线的蛇形机器人在流场中避障的轨迹跟踪控制律[J].机器人, 2019, 41(4):433-442.

    Li D F, Deng H B, Pan Z H, et al. Trajectory tracking control law for obstacle avoidance of a snake-like robot in flow field based on an improved serpentine curve[J]. Robot, 2019, 41(4):433-442.

    [16]

    Li D F, Pan Z H, Deng H B, et al. 2D underwater obstacle avoidance control algorithm based on IB-LBM and APF method for a multi-joint snake-like robot[J]. Journal of Intelligent & Robotic Systems, 2020, 98(1):771-790.

    [17] 张丹凤,李斌,常健. 基于角度对称性调节的蛇形机器人路径跟随方法[J].机器人, 2019, 41(6):788-794,833.

    Zhang D F, Li B, Chang J. Path following method for snake robot based on the angle symmetry adjustment[J]. Robot, 2019, 41(6):788-794,833.

    [18]

    Ma S G. Analysis of creeping locomotion of a snake-like robot[J]. Advanced Robotics, 2001, 15(2):205-224.

  • 期刊类型引用(10)

    1. 梁超,王洪珍,鲍小沾,张琪. 一种稻田自主播种机的路径跟踪方法的研究. 农机化研究. 2024(03): 52-56 . 百度学术
    2. 郭万金,李儒,郝钦磊,曹雏清,赵立军. 农业物料移运机器人协同作业时间最优轨迹规划方法. 农业机械学报. 2024(01): 22-38 . 百度学术
    3. 李鹏,王刘银,王刚,马书根. 蛇形机器人全身避障策略设计与实验研究. 机械工程学报. 2024(21): 4-13 . 百度学术
    4. Ke Yang. Adaptive Swimming of Underwater Snake-like Robot in Different Underwater Environment. Journal of Harbin Institute of Technology(New Series). 2023(04): 58-67 . 必应学术
    5. 芮宏斌,曹伟,朱玲仪,彭家璇,郭旋,王天赐. 光伏阵列清洁机器人路径跟踪改进型自抗扰控制. 动力学与控制学报. 2023(09): 50-58 . 百度学术
    6. 栾宪超,常健,王聪,李斌. 主动关节履带式蛇形救援机器人结构参数多目标优化设计. 机器人. 2022(03): 267-280 . 本站查看
    7. 李亚娟. 嵌入式图像识别的机器人路径追踪系统. 单片机与嵌入式系统应用. 2022(06): 38-41+46 . 百度学术
    8. 江渝川,何国斌. 基于红外视觉技术的机器人移动轨迹智能检测研究. 激光杂志. 2022(10): 184-187 . 百度学术
    9. 来言芳. 室内环境学前儿童陪伴机器人行为轨迹智能控制方法. 自动化与仪器仪表. 2021(10): 9-12 . 百度学术
    10. 李东方,杨弘晟,邓宏彬,黄捷. 蛇形机器人跟踪误差预测的自适应轨迹跟踪控制器. 仪器仪表学报. 2021(11): 267-278 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  103
  • HTML全文浏览量:  393
  • PDF下载量:  311
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-03-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭