Citation: | LU Zilin, ZHOU Yajun, HUANG Qiyun, LI Yuanqing. A Motion Control Method for Robotic Arm Based on a Wearable Hybrid Human-Machine Interface[J]. ROBOT, 2024, 46(1): 68-80. DOI: 10.13973/j.cnki.robot.230254 |
[1] |
KUMAR D, VERMA S, BHATTACHARYA S, et al. Audio-visual stimulation in conjunction with functional electrical stimulation to address upper limb and lower limb movement disorder[J]. European Journal of Translational Myology, 2016, 26(2). doi: 10.4081/ejtm.2016.6030
|
[2] |
LEE B O, SARAGIH I D, BATUBARA S O. Robotic arm use for upper limb rehabilitation after stroke: A systematic review and meta-analysis[J]. Kaohsiung Journal of Medical Sciences, 2023, 39(5): 435-445. doi: 10.1002/kjm2.12679
|
[3] |
FROLOV A A, KOZLOVSKAIA I B, BIRYUKOVA E V, et al. Robotic devices in poststroke rehabilitation[J]. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I P Pavlova, 2017, 67(4): 394-413. doi: 10.7868/s004446771704-0017
|
[4] |
BOCKBRADER M A, FRANCISCO G, LEE R, et al. Brain computer interfaces in rehabilitation medicine[J]. PM & R, 2018, 10(9S2): S233-S243. doi: 10.1016/j.pmrj.2018.05.028
|
[5] |
CHAUDHARY U, BIRBAUMER N, RAMOS-MURGUIAL-DAY A. Brain-computer interfaces for communication and rehabilitation[J]. Nature Reviews Neurology, 2016, 12(9): 513-525. doi: 10.1038/nrneurol.2016.113
|
[6] |
REMSIK A, YOUNG B, VERMILYEA R, et al. A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke[J]. Expert Review of Medical Devices, 2016, 13(5): 445-454. doi: 10.1080/17434440.2016.1174572
|
[7] |
HORTAL E, IÁÑEZ E, ÚBEDA A, et al. Combining a brain-machine interface and an electrooculography interface to perform pick and place tasks with a robotic arm[J]. Robotics and Autonomous Systems, 2015, 72: 181-188. doi: 10.1016/j.robot.2015.05.010
|
[8] |
HAYASHI H, TSUJI T. Human-machine interfaces based on bioelectric signals: A narrative review with a novel system proposal[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17(11): 1536-1544. doi: 10.1002/tee.23646
|
[9] |
DONOGHUE J P. Bridging the brain to the world: A perspective on neural interface systems[J]. Neuron, 2008, 60(3): 511-521. doi: 10.1016/j.neuron.2008.10.037
|
[10] |
VILELA M, HOCHBERG L R. Applications of brain-computer interfaces to the control of robotic and prosthetic arms[J]. Handbook of Clinical Neurology, 2020, 168: 87-99. doi: 10.1016/b978-0-444-63934-9.00008-1
|
[11] |
WANG H F, DONG X J, CHEN Z K, et al. Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task[C]//37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA: IEEE, 2015: 1476-1479. doi: 10.1109/EMBC.2015.7318649
|
[12] |
SHARMA K, JAIN N, PAL P K. Detection of eye closing/opening from EOG and its application in robotic arm control[J]. Biocybernetics and Biomedical Engineering, 2020, 40(1): 173-186. doi: 10.1016/j.bbe.2019.10.004
|
[13] |
ARTEMIADIS P K, KYRIAKOPOULOS K J. A switching regime model for the EMG-based control of a robot arm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(1): 53-63. doi: 10.1109/tsmcb.2010.2045120
|
[14] |
CHENG L W, LI D L, YU G J, et al. Robotic arm control system based on brain-muscle mixed signals[J]. Biomedical Signal Processing and Control, 2022, 77. doi: 10.1016/j.bspc.2022.103754
|
[15] |
TADANO K, KAWASHIMA K. A pneumatic laparoscope holder controlled by head movement[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2015, 11(3): 331-340. doi: 10.1002/rcs.1606
|
[16] |
KILMARX J, ABIRI R, BORHANI S, et al. Sequence-based manipulation of robotic arm control in brain machine interface[J]. International Journal of Intelligent Robotics and Applications, 2018, 2(2): 149-160. doi: 10.1007/s41315-018-0049-7
|
[17] |
GAO Q, DOU L X, BELKACEM A N, et al. Noninvasive electroencephalogram based control of a robotic arm for writing task using hybrid BCI system[J]. BioMed Research International, 2017. doi: 10.1155/2017/8316485
|
[18] |
JOHNSON G D, WAYTOWICH N R, COX D J, et al. Extending the discrete selection capabilities of the P300 speller to goal-oriented robotic arm control[C]//3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA: IEEE, 2010: 572-575. doi: 10.1109/BIOROB.2010.5628039
|
[19] |
PATHIRAGE I, KHOKAR K, KLAY E, et al. A vision based P300 brain computer interface for grasping using a wheelchair-mounted robotic arm[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 2013: 188-193. doi: 10.1109/AIM.2013.6584090
|
[20] |
AI J K, MENG J J, MAI X M, et al. BCI control of a robotic arm based on SSVEP with moving stimuli for reach and grasp tasks[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(8): 3818-3829. doi: 10.1109/jbhi.2023.3277612
|
[21] |
CHEN X, ZHAO B, WANG Y, et al. Control of a 7-DOF robotic arm system with an SSVEP-based BCI[J]. International Journal of Neural Systems, 2018, 28(8). doi: 10.1142/S0129065718500181
|
[22] |
ALFRED J, S H, ALEX J S R. BCI based robotic arm control using MI-EEG and spiking neural network[C]//13th International Conference on Computing Communication and Networking Technologies. Piscataway, USA: IEEE, 2022. doi: 10.1109ICCCNT54827.2022.9984240.
|
[23] |
XU Y, DING C, SHU X K, et al. Shared control of a robotic arm using non-invasive brain-computer interface and computer vision guidance[J]. Robotics and Autonomous Systems, 2019, 115: 121-129. doi: 10.1016/j.robot.2019.02.014
|
[24] |
HE S H, ZHOU Y J, YU T Y, et al. EEG- and EOG-based asynchronous hybrid BCI: A system integrating a speller, a web browser, an e-mail client, and a file explorer[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(2): 519-530. doi: 10.1109/tnsre.2019.2961309
|
[25] |
UBEDA A, IÁÑEZ E, AZORÍN J M. Wireless and portable EOG-based interface for assisting disabled people[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 870-873. doi: 10.1109/tmech.2011.2160354
|
[26] |
ASPELUND S, PATEL P, LEE M H, et al. Controlling a robotic arm for functional tasks using a wireless head-joystick: A case study of a child with congenital absence of upper and lower limbs[J]. PLOS ONE, 2020, 15(8). doi: 10.1371/journal.pone.0226052
|
[27] |
JOHN R A, VARGHESE S, SHAJI S T, et al. Assistive device for physically challenged persons using voice controlled intelligent robotic arm[C]//6th International Conference on Advanced Computing and Communication Systems. Piscataway, USA: IEEE, 2020: 806-810. doi: 10.1109/icaccs48705.2020.9074236
|
[28] |
CHOI I, RHIU I, LEE Y, et al. A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives[J]. PLOS ONE, 2017, 12(4). doi: 10.1371/journal.pone.0176674
|
[29] |
ZHOU Y J, YU T Y, GAO W, et al. Shared three-dimensional robotic arm control based on asynchronous BCI and computer vision[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 3163-3175. doi: 10.1109/tnsre.2023.3299350
|
[30] |
MINATI L, YOSHIMURA N, KOIKE Y. Hybrid control of a vision-guided robot arm by EOG, EMG, EEG biosignals and head movement acquired via a consumer-grade wearable device[J]. IEEE Access, 2016, 4: 9528-9541. doi: 10.1109/access.2017.2647851
|
[31] |
XU B G, LI W L, LIU D P, et al. Continuous hybrid BCI control for robotic arm using noninvasive electroencephalogram, computer vision, and eye tracking[J]. Mathematics, 2022, 10(4). doi: 10.3390/math10040618
|
[32] |
ZHU Y L, LI Y, LU J L, et al. A hybrid BCI based on SSVEP and EOG for robotic arm control[J]. Frontiers in Neurorobotics, 2020, 14. doi: 10.3389/fnbot.2020.583641
|
[33] |
蒋鑫, 刘红星, 刘铁兵, 等. 生物电采集中右腿驱动电路参数的确定[J]. 北京生物医学工程, 2011, 30(5): 506-511. doi: 10.3969/j.issn.1002-3208.2011.05.14
JIANG X, LIU H X, LIU T B, et al. Parameters for the driven-right-leg in biopotential measurements[J]. Beijing Biomedical Engineering, 2011, 30(5): 506-511. doi: 10.3969/j.issn.1002-3208.2011.05.14
|
[34] |
杨正, 王静敏, 朱樟明, 等. 利用右腿驱动技术的心电信号模拟前端设计[J]. 西安电子科技大学学报(自然科学版), 2016, 43(4): 166-171. doi: 10.3969/j.issn.1001-2400.2016.04.029
YANG Z, WANG J M, ZHU Z M, et al. ECG front-end subsystem with the driven-right-leg circuit[J]. Journal of Xidian University (Natural Science), 2016, 43(4): 166-171. doi: 10.3969/j.issn.1001-2400.2016.04.029
|
[35] |
贺庆, 郝思聪, 司娟宁, 等. 面向脑机接口的脑电采集设备硬件系统综述[J]. 中国生物医学工程学报, 2020, 39(6): 747-758. doi: 10.3969/j.issn.0258-8021.2020.06.012
HE Q, HAO S C, SI J N, et al. Research development of electroencephalogram acquisition devices for brain computer interface[J]. Chinese Journal of Biomedical Engineering, 2020, 39(6): 747-758. doi: 10.3969/j.issn.0258-8021.2020.06.012
|
[36] |
LI Y Q, HE S H, HUANG Q Y, et al. A EOG-based switch and its application for "start/stop" control of a wheelchair[J]. Neurocomputing, 2018, 275: 1350-1357. doi: 10.1016/j.neucom.2017.09.085
|
[37] |
MA J X, ZHANG Y, CICHOCKI A, et al. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: Application to robot control[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(3): 876-889. doi: 10.1109/TBME.2014.2369483
|
[38] |
WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Brain-computer interface technology: A review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173. doi: 10.1109/TRE.2000.847807
|
[39] |
PANICKER R C, PUTHUSSERYPADY S, SUN Y. An asynchronous P300 BCI with SSVEP-based control state detection[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(6): 1781-1788. doi: 10.1109/TBME.2011.2116018
|
[40] |
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3): 1247-1250. doi: 10.5194/gmd-7-1247-2014
|
[41] |
MILLAN J R, MOURIÑO J. Asynchronous BCI and local neural classifiers: An overview of the adaptive brain interface project[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 159-161. doi: 10.1109/TNSRE.2003.814435
|
[42] |
ZHAO X F, LIU D, XIE S Q, et al. Multiple action movement control scheme for assistive robot based on binary motor imagery EEG[C]//9th International Conference on Communications, Signal Processing, and Systems. Singapore: Springer, 2021: 760-768. doi: 10.1007/978-981-15-8411-4_101
|
[43] |
ALJALAL M, IBRAHIM S, DJEMAL R, et al. Comprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signals[J]. Intelligent Service Robotics, 2020, 13(4): 539-563. doi: 10.1007/s11370-020-00328-5
|
[44] |
PESHORI K R, SCHICATANO E J, GOPALASWAMY R, et al. Aging of the trigeminal blink system[J]. Experimental Brain Research, 2001, 136(3): 351-363. doi: 10.1007/s002210000585
|