Citation: | ZHOU Yiqun, LUO Jianjun, WANG Mingming. Detumbling Strategy Based on Task Compatibility for Space Robot after Capturing a Target[J]. ROBOT, 2023, 45(1): 1-15. DOI: 10.13973/j.cnki.robot.210328 |
[1] |
Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26. doi: 10.1016/j.paerosci.2014.03.002
|
[2] |
梁斌, 杜晓东, 李成, 等.空间机器人非合作航天器在轨服务研究进展[J].机器人, 2012, 34(2):242-256. http://robot.sia.cn/CN/Y2012/V34/I2/242
Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2):242-256. http://robot.sia.cn/CN/Y2012/V34/I2/242
|
[3] |
路勇, 刘晓光, 周宇, 等.空间翻滚非合作目标消旋技术发展综述[J].航空学报, 2018, 39(1). doi: 10.7527/S1000-6893.2017.021302
Lu Y, Liu X G, Zhou Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39. doi: 10.7527/S1000-6893.2017.021302
|
[4] |
Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2004:3345-3350. doi: 10.1109/IROS.2004.1389933
|
[5] |
Yoshida K, Dimitrov D, Nakanishi H. On the capture of tumbling satellite by a space robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:4127-4132. doi: 10.1109/IROS.2006.281900
|
[6] |
Aghili F. Pre- and post-grasping robot motion planning to capture and stabilize a tumbling/drifting free-floater with uncertain dynamics[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:5461-5468. doi: 10.1109/ICRA.2013.6631360
|
[7] |
Aghili F. Optimal trajectories and robot control for detumbling a non-cooperative satellite[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(5):981-988. doi: 10.2514/1.G004758
|
[8] |
王明明, 罗建军, 王嘉文, 等.空间机器人捕获非合作目标后的消旋策略及阻抗控制[J].机器人, 2018, 40(5):750-761. doi: 10.13973/j.cnki.robot.170567
Wang M M, Luo J J, Wang J W, et al. Detumbling strategy and impedance control for space robot after capturing an uncooperative satellite[J]. Robot, 2018, 40(5):750-761. doi: 10.13973/j.cnki.robot.170567
|
[9] |
王明明, 罗建军, 余敏, 等.冗余空间机械臂抓捕自旋卫星后的消旋控制[J].宇航学报, 2018, 39(5):550-561. doi: 10.3873/j.issn.1000-%EE%98%8D1328.2018.05.010
Wang M M, Luo J J, Yu M, et al. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite[J]. Journal of Astronautics, 2018, 39(5):550-561. doi: 10.3873/j.issn.1000-%EE%98%8D1328.2018.05.010
|
[10] |
Wang M M, Luo J J, Yuan J P, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target[J]. Nonlinear Dynamics, 2018, 92(3):1023-1043. doi: 10.1007/s11071-018-4106-4
|
[11] |
Lampariello R, Mishra H, Oumer N, et al. Tracking control for the grasping of a tumbling satellite with a free-floating robot[J]. IEEE Robotics and Automation Letters, 2018, 3(4):3638-3645. doi: 10.1109/LRA.2018.2855799
|
[12] |
Luo J J, Xu R N, Wang M M. Detumbling and stabilization of a tumbling target using a space manipulator with joint-velocity limits[J]. Advances in Space Research, 2020, 66(7):1689-1699. doi: 10.1016/j.asr.2020.06.025
|
[13] |
Zong L J, Luo J J, Wang M M. Optimal detumbling trajectory generation and coordinated control after space manipulator capturing tumbling targets[J]. Aerospace Science and Technology, 2021, 112(4). doi: 10.1016/j.ast.2021.106626
|
[14] |
程靖, 陈力.空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J].机器人, 2017, 39(5):724-732. doi: 10.13973/j.cnki.robot.2017.0724
Cheng J, Chen L. ELM neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot, 2017, 39(5):724-732. doi: 10.13973/j.cnki.robot.2017.0724
|
[15] |
Andrea A, Alfredo V, Panagiotis T. Dynamics and control of spacecraft manipulators with thrusters and momentum exchange devices[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1):15-29. doi: 10.2514/1.G003601
|
[16] |
de Stefano M, Mishra H, Balachandran R, et al. Multi-rate tracking control for a space robot on a controlled satellite:A passivity-based strategy[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1319-1326. doi: 10.1109/LRA.2019.2895420
|
[17] |
Aghili F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3):634-649. doi: 10.1109/TRO.2011.2179581
|
[18] |
Murotsu Y, Senda K, Ozaki M, et al. Parameter identification of unknown object handled by free-flying space robot[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3):488-494. doi: 10.2514/3.21225
|
[19] |
Ma O, Dang H, Pham K. On-orbit identification of inertia properties of spacecraft using a robotic arm[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1761-1771. doi: 10.2514/1.35188
|
[20] |
Nguyen-Huynh T C, Sharf I. Adaptive reactionless motion and parameter identification in postcapture of space debris[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):404-414. doi: 10.2514/1.57856
|
[21] |
Chu Z Y, Ma Y, Hou Y Y, et al. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator[J]. Acta Astronautica, 2017, 131:69-82. doi: 10.1016/j.actaastro.2016.11.019
|
[22] |
Zhang B, Liang B, Wang Z W, et al. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia[J]. Acta Astronautica, 2017, 134:75-84. doi: 10.1016/j.actaastro.2017.01.041
|
[23] |
Zhu Y K, Qiao J Z, Guo L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3):1973-1983. doi: 10.1109/TIE.2018.2838065
|
[24] |
Jayakody H S, Shi L L, Katupitiya J, et al. Robust adaptive coordination controller for a spacecraft equipped with a robotic manipulator[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(12):2699-2711. doi: 10.2514/1.G002145
|
[25] |
Abiko S, Lampariello R, Hirzinger G. Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:1020-1025. doi: 10.1109/IROS.2006.281785
|
[26] |
Oki T, Abiko S, Nakanishi H, et al. Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:625-630. doi: 10.1109/IROS.2011.6095159
|
[27] |
Nguyen-Huynh T C, Sharf I. Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:4202-4207. doi: 10.1109/ICRA.2011.5980398
|
[28] |
Gangapersaud R A, Liu G J, de Ruiter A H J. Detumbling a noncooperative space target with model uncertainties using a space manipulator[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4):910-918. doi: 10.2514/1.G003111
|
[29] |
Gangapersaud R A, Liu G J, de Ruiter A H J. Detumbling of a non-cooperative target with unknown inertial parameters using a space robot[J]. Advances in Space Research, 2019, 63(12):3900-3915. doi: 10.1016/j.asr.2019.03.002
|
[30] |
Gangapersaud R A, Liu G, de Ruiter A H J. Robust coordination control of a space manipulator to detumble a non-cooperative target[J]. Acta Astronautica, 2021, 179:266-279. doi: 10.1016/j.actaastro.2020.10.033
|
[31] |
Yoshikawa T. Dynamic manipulability of robot manipulators[J]. Transactions of the Society of Instrument and Control Engineers, 1985, 21(9):970-975. doi: 10.9746/sicetr1965.21.970
|
[32] |
Zhou Y Q, Luo J J, Wang M M. Dynamic manipulability analysis of multi-arm space robot[J]. Robotica, 2021, 39(1):23-41. doi: 10.1017/S0263574720000077
|
[33] |
Chiu S L. Task compatibility of manipulator postures[J]. International Journal of Robotics Research, 1988, 7(5):13-21. doi: 10.1177/027836498800700502
|
[34] |
Xu R N, Luo J J, Wang M M. Kinematic and dynamic manipulability analysis for free-floating space robots with closed chain constraints[J]. Robotics and Autonomous Systems, 2020, 130. doi: 10.1016/j.robot.2020.103548
|
[35] |
Hogan N. Impedance control:An approach to manipulation[C]//American Control Conference. Piscataway, USA:IEEE, 1984:304-313. doi: 10.23919/acc.1984.4788393
|
[36] |
Walker I D, Freeman R A, Marcus S I. Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators[J]. International Journal of Robotics Research, 1991, 10(4):396-409. doi: 10.1177/027836499101000408
|
[37] |
Erhart S, Hirche S. Internal force analysis and load distribution for cooperative multi-robot manipulation[J]. IEEE Transactions on Robotics, 2015, 31(5):1238-1243. doi: 10.1109/TRO.2015.2459412
|