ZHOU Yiqun, LUO Jianjun, WANG Mingming. Detumbling Strategy Based on Task Compatibility for Space Robot after Capturing a Target[J]. ROBOT, 2023, 45(1): 1-15. DOI: 10.13973/j.cnki.robot.210328
Citation: ZHOU Yiqun, LUO Jianjun, WANG Mingming. Detumbling Strategy Based on Task Compatibility for Space Robot after Capturing a Target[J]. ROBOT, 2023, 45(1): 1-15. DOI: 10.13973/j.cnki.robot.210328

Detumbling Strategy Based on Task Compatibility for Space Robot after Capturing a Target

More Information
  • Received Date: July 19, 2021
  • Revised Date: August 23, 2021
  • Accepted Date: September 01, 2021
  • Available Online: March 05, 2023
  • A detumbling planning and control method based on task compatibility considering the input constraint of robotic system is proposed to stabilize the dual-arm space robot after capturing a tumbling target. Firstly, the dynamic model of the combined system after the space robot captures the target is presented as the basis of planning and control. Subsequently, a fast detumbling strategy of the target is designed based on the dynamic manipulability and task compatibility, where the orientation and magnitude of the expected target acceleration are taken as the opposite of its velocity and the maximum allowed by the input constraint of robotic system respectively. Finally, a compliant control method is proposed based on the derived kinematic and dynamic models to track the desired trajectory and regulate the end-effector contact force by establishing compliance equations for the target and the end-effectors. The simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom dual-arm space robot, which demonstrate the effectiveness of the proposed method.
  • [1]
    Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26. doi: 10.1016/j.paerosci.2014.03.002
    [2]
    梁斌, 杜晓东, 李成, 等.空间机器人非合作航天器在轨服务研究进展[J].机器人, 2012, 34(2):242-256. http://robot.sia.cn/CN/Y2012/V34/I2/242

    Liang B, Du X D, Li C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2):242-256. http://robot.sia.cn/CN/Y2012/V34/I2/242
    [3]
    路勇, 刘晓光, 周宇, 等.空间翻滚非合作目标消旋技术发展综述[J].航空学报, 2018, 39(1). doi: 10.7527/S1000-6893.2017.021302

    Lu Y, Liu X G, Zhou Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39. doi: 10.7527/S1000-6893.2017.021302
    [4]
    Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2004:3345-3350. doi: 10.1109/IROS.2004.1389933
    [5]
    Yoshida K, Dimitrov D, Nakanishi H. On the capture of tumbling satellite by a space robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:4127-4132. doi: 10.1109/IROS.2006.281900
    [6]
    Aghili F. Pre- and post-grasping robot motion planning to capture and stabilize a tumbling/drifting free-floater with uncertain dynamics[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:5461-5468. doi: 10.1109/ICRA.2013.6631360
    [7]
    Aghili F. Optimal trajectories and robot control for detumbling a non-cooperative satellite[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(5):981-988. doi: 10.2514/1.G004758
    [8]
    王明明, 罗建军, 王嘉文, 等.空间机器人捕获非合作目标后的消旋策略及阻抗控制[J].机器人, 2018, 40(5):750-761. doi: 10.13973/j.cnki.robot.170567

    Wang M M, Luo J J, Wang J W, et al. Detumbling strategy and impedance control for space robot after capturing an uncooperative satellite[J]. Robot, 2018, 40(5):750-761. doi: 10.13973/j.cnki.robot.170567
    [9]
    王明明, 罗建军, 余敏, 等.冗余空间机械臂抓捕自旋卫星后的消旋控制[J].宇航学报, 2018, 39(5):550-561. doi: 10.3873/j.issn.1000-%EE%98%8D1328.2018.05.010

    Wang M M, Luo J J, Yu M, et al. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite[J]. Journal of Astronautics, 2018, 39(5):550-561. doi: 10.3873/j.issn.1000-%EE%98%8D1328.2018.05.010
    [10]
    Wang M M, Luo J J, Yuan J P, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target[J]. Nonlinear Dynamics, 2018, 92(3):1023-1043. doi: 10.1007/s11071-018-4106-4
    [11]
    Lampariello R, Mishra H, Oumer N, et al. Tracking control for the grasping of a tumbling satellite with a free-floating robot[J]. IEEE Robotics and Automation Letters, 2018, 3(4):3638-3645. doi: 10.1109/LRA.2018.2855799
    [12]
    Luo J J, Xu R N, Wang M M. Detumbling and stabilization of a tumbling target using a space manipulator with joint-velocity limits[J]. Advances in Space Research, 2020, 66(7):1689-1699. doi: 10.1016/j.asr.2020.06.025
    [13]
    Zong L J, Luo J J, Wang M M. Optimal detumbling trajectory generation and coordinated control after space manipulator capturing tumbling targets[J]. Aerospace Science and Technology, 2021, 112(4). doi: 10.1016/j.ast.2021.106626
    [14]
    程靖, 陈力.空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J].机器人, 2017, 39(5):724-732. doi: 10.13973/j.cnki.robot.2017.0724

    Cheng J, Chen L. ELM neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot, 2017, 39(5):724-732. doi: 10.13973/j.cnki.robot.2017.0724
    [15]
    Andrea A, Alfredo V, Panagiotis T. Dynamics and control of spacecraft manipulators with thrusters and momentum exchange devices[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1):15-29. doi: 10.2514/1.G003601
    [16]
    de Stefano M, Mishra H, Balachandran R, et al. Multi-rate tracking control for a space robot on a controlled satellite:A passivity-based strategy[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1319-1326. doi: 10.1109/LRA.2019.2895420
    [17]
    Aghili F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3):634-649. doi: 10.1109/TRO.2011.2179581
    [18]
    Murotsu Y, Senda K, Ozaki M, et al. Parameter identification of unknown object handled by free-flying space robot[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3):488-494. doi: 10.2514/3.21225
    [19]
    Ma O, Dang H, Pham K. On-orbit identification of inertia properties of spacecraft using a robotic arm[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1761-1771. doi: 10.2514/1.35188
    [20]
    Nguyen-Huynh T C, Sharf I. Adaptive reactionless motion and parameter identification in postcapture of space debris[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):404-414. doi: 10.2514/1.57856
    [21]
    Chu Z Y, Ma Y, Hou Y Y, et al. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator[J]. Acta Astronautica, 2017, 131:69-82. doi: 10.1016/j.actaastro.2016.11.019
    [22]
    Zhang B, Liang B, Wang Z W, et al. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia[J]. Acta Astronautica, 2017, 134:75-84. doi: 10.1016/j.actaastro.2017.01.041
    [23]
    Zhu Y K, Qiao J Z, Guo L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3):1973-1983. doi: 10.1109/TIE.2018.2838065
    [24]
    Jayakody H S, Shi L L, Katupitiya J, et al. Robust adaptive coordination controller for a spacecraft equipped with a robotic manipulator[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(12):2699-2711. doi: 10.2514/1.G002145
    [25]
    Abiko S, Lampariello R, Hirzinger G. Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:1020-1025. doi: 10.1109/IROS.2006.281785
    [26]
    Oki T, Abiko S, Nakanishi H, et al. Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:625-630. doi: 10.1109/IROS.2011.6095159
    [27]
    Nguyen-Huynh T C, Sharf I. Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:4202-4207. doi: 10.1109/ICRA.2011.5980398
    [28]
    Gangapersaud R A, Liu G J, de Ruiter A H J. Detumbling a noncooperative space target with model uncertainties using a space manipulator[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4):910-918. doi: 10.2514/1.G003111
    [29]
    Gangapersaud R A, Liu G J, de Ruiter A H J. Detumbling of a non-cooperative target with unknown inertial parameters using a space robot[J]. Advances in Space Research, 2019, 63(12):3900-3915. doi: 10.1016/j.asr.2019.03.002
    [30]
    Gangapersaud R A, Liu G, de Ruiter A H J. Robust coordination control of a space manipulator to detumble a non-cooperative target[J]. Acta Astronautica, 2021, 179:266-279. doi: 10.1016/j.actaastro.2020.10.033
    [31]
    Yoshikawa T. Dynamic manipulability of robot manipulators[J]. Transactions of the Society of Instrument and Control Engineers, 1985, 21(9):970-975. doi: 10.9746/sicetr1965.21.970
    [32]
    Zhou Y Q, Luo J J, Wang M M. Dynamic manipulability analysis of multi-arm space robot[J]. Robotica, 2021, 39(1):23-41. doi: 10.1017/S0263574720000077
    [33]
    Chiu S L. Task compatibility of manipulator postures[J]. International Journal of Robotics Research, 1988, 7(5):13-21. doi: 10.1177/027836498800700502
    [34]
    Xu R N, Luo J J, Wang M M. Kinematic and dynamic manipulability analysis for free-floating space robots with closed chain constraints[J]. Robotics and Autonomous Systems, 2020, 130. doi: 10.1016/j.robot.2020.103548
    [35]
    Hogan N. Impedance control:An approach to manipulation[C]//American Control Conference. Piscataway, USA:IEEE, 1984:304-313. doi: 10.23919/acc.1984.4788393
    [36]
    Walker I D, Freeman R A, Marcus S I. Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators[J]. International Journal of Robotics Research, 1991, 10(4):396-409. doi: 10.1177/027836499101000408
    [37]
    Erhart S, Hirche S. Internal force analysis and load distribution for cooperative multi-robot manipulation[J]. IEEE Transactions on Robotics, 2015, 31(5):1238-1243. doi: 10.1109/TRO.2015.2459412
  • Other Related Supplements

Catalog

    Article views (174) PDF downloads (55) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return