Citation: | BAI Shiyu, LAI Jizhou, LÜ Pin, JI Bowen, ZHENG Xinyue, FANG Wei, CEN Yiting. Mobile Robot Localization and Perception Method for Subterranean Space Exploration[J]. ROBOT, 2022, 44(4): 463-470. DOI: 10.13973/j.cnki.robot.210141 |
[1] |
陈少飞. 无人机集群系统侦察监视任务规划方法[D]. 长沙: 国防科学技术大学, 2016.
Chen S F. Planning for reconnaissance and monitoring using UAV swarms[D]. Changsha: National University of Defense Technology, 2016.
|
[2] |
Ebadi K, Chang Y, Palieri M, et al. LAMP: Large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2020: 80-86. doi: 10.1109/ICRA40945.2020.9197082
|
[3] |
Tzafestas S G. Mobile robot control and navigation: A global overview[J]. Journal of Intelligent and Robotic Systems, 2018, 91(1): 35-58. doi: 10.1007/s10846-018-0805-9
|
[4] |
Ellery A A. Robotic astrobiology-prospects for enhancing scientific productivity of Mars rover missions[J]. International Journal of Astrobiology, 2018, 17(3): 203-217. doi: 10.1017/S1473550417000180
|
[5] |
Aravind K R, Raja P, Pérez-Ruiz M. Task-based agricultural mobile robots in arable farming: A review[J]. Spanish Journal of Agricultural Research, 2017, 15(1). doi: 10.5424/sjar/2017151-9573
|
[6] |
Rouček T, Pecka M, Čížek P, et al. DARPA subterranean challenge: Multi-robotic exploration of underground environments[M]//Lecture Notes in Computer Science, Vol. 11995. Berlin, Germany: Springer, 2019: 274-290. doi: 10.1007/978-3-030-43890-6_22
|
[7] |
Zhang J, Singh S. LOAM: Lidar odometry and mapping in realtime[A/OL]. (2014-07-15)[2019-02-15]. http://www.roboticsproceedings.org/rss10/p07.pdf.
|
[8] |
Shan T X, Englot B. LeGO-LOAM: Lightweight and groundoptimized lidar odometry and mapping on variable terrain[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2018: 4758-4765. doi: 10.1109/IROS.2018.8594299
|
[9] |
Shan T X, Englot B, Meyers D, et al. LIO-SAM: Tightlycoupled lidar inertial odometry via smoothing and mapping[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2020: 5135-5142. doi: 10.1109/IROS45743.2020.9341176
|
[10] |
Tang J, Chen Y W, Niu X J, et al. LiDAR scan matching aided inertial navigation system in GNSS-denied environment[J]. Sensors, 2015, 15(7): 16710-16728. doi: 10.3390/s150716710
|
[11] |
Forster C, Carlone L, Dellaert F, et al. On-manifold preintegration for real-time visual-inertial odometry[J]. IEEE Transactions on Robotics, 2016, 33(1): 1-21. doi: 10.1109/TRO.2016.2597321
|
[12] |
Qin T, Li P L, Shen S J. VINS-Mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. doi: 10.1109/TRO.2018.2853729
|
[13] |
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2001. doi: 10.1109/CVPR.2001.990517
|
[14] |
王顺飞, 闫钧华, 王志刚. 改进的基于局部联合特征的运动目标检测方法[J]. 仪器仪表学报, 2015, 36(10): 2241-2248. doi: 10.3969/j.issn.0254-3087.2015.10.011
Wang S F, Yan J H, Wang Z G. Improved moving object detection algorithm based on local united feature[J]. Chinese Journal of Scientific Instrument, 2015, 36(10): 2241-2248. doi: 10.3969/j.issn.0254-3087.2015.10.011
|
[15] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60: 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
|
[16] |
Vapnik V N. The nature of statistical learning theory[M]. Berlin, Germany: Springer, 2000.
|
[17] |
Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. doi: 10.1109/TPAMI.2009.167
|
[18] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2014: 580-587. doi: 10.1109/CVPR.2014.81
|
[19] |
Girshick R. Fast R-CNN[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2015: 1440-1448.
|
[20] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[21] |
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016: 779-788. doi: 10.1109/CVPR.2016.91
|
[22] |
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[M]//Lecture Notes in Computer Science, Vol. 9905. Berlin, Germany: Springer, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2
|