WANG Qi, ZHANG Xiuli, JIANG Lei, HUANG Senwei, YAO Yan'an. A Cheetah-mimicking Quadruped Running Robot with 2DOF Articulated Trunk[J]. ROBOT, 2022, 44(3): 257-266. DOI: 10.13973/j.cnki.robot.210101
Citation: WANG Qi, ZHANG Xiuli, JIANG Lei, HUANG Senwei, YAO Yan'an. A Cheetah-mimicking Quadruped Running Robot with 2DOF Articulated Trunk[J]. ROBOT, 2022, 44(3): 257-266. DOI: 10.13973/j.cnki.robot.210101

A Cheetah-mimicking Quadruped Running Robot with 2DOF Articulated Trunk

More Information
  • Received Date: March 19, 2021
  • Revised Date: June 09, 2021
  • Accepted Date: June 03, 2021
  • Available Online: October 24, 2022
  • In order to explore the mechanism of leg movements enhanced by spinal movements, a cheetah-mimicking quadruped running robot with 2-DOF (degree of freedom) articulated trunk is designed. The mechanical processes of the running motion in bound gait with flying phase are described. The dynamics model of the quadruped robot is established using a damped spring loaded inverted pendulum (D-SLIP) model. Referring to the running mode of cheetahs, the trajectories of the coupled motions of the spine joints and leg joints of the quadruped robot are planned. An improved PSO (particle swarm optimization) algorithm is proposed to solve the nested optimization problem with target mutual exclusion between the dimensional parameters of actuation mechanism of robot spine joint and the control parameters of motion trajectory. The dynamic simulations of the running motion of the quadruped robot in bound gait are carried out. The results show that the coordinated movements between the spine and the legs can increase the stride length of the quadruped robot and allow the robot generating flying phases, so as to improve the running speed of the robot.
  • [1]
    Hildebrand M. Motions of the running cheetah and horse[J]. Journal of Mammalogy, 1959, 40(4): 481-495. doi: 10.2307/1376265
    [2]
    Hildebrand M. Further studies on locomotion of the cheetah[J]. Journal of Mammalogy, 1961, 42(1): 84-91. doi: 10.2307/1377246
    [3]
    Gambaryan P P. How mammals run: Anatomical adaptations[J]. BioScience, 1975, 25(8): 520. doi: 10.2307/1296969
    [4]
    Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits[J]. Journal of Experimental Biology, 2006, 209(19): 3925-3939. doi: 10.1242/jeb.02400
    [5]
    Alexander R M, Dimery N J, Ker R F. Elastic structures in the back and their role in galloping in some mammals[J]. Journal of Zoology, 1985, 207(4): 467-482. doi: 10.1111/j.1469-7998.1985.tb04944.x
    [6]
    Gray J. How animals move[M]. Cambridge, UK: Cambridge University Press, 1953.
    [7]
    Semini C, Tsagarakis N G, Guglielmino E, et al. Design of HyQ - A hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(I6): 831-849. doi: 10.1177/0959651811402275
    [8]
    Semini C, Barasuol V, Goldsmith J, et al. Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 635-646. doi: 10.1109/TMECH.2016.2616284
    [9]
    Hutter M, Gehring C, Jud D, et al. ANYmal - A highly mobile and dynamic quadrupedal robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2016: 38-44. doi: 10.1109/IROS.2016.7758092
    [10]
    Park H W, Park S, Kim S. Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3D running of MIT Cheetah 2[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2015: 5163-5170. doi: 10.1109/ICRA.2015.7139918
    [11]
    Bledt G, Powell M J, Katz B G, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//IEEE/RSJ International Conference of Intelligent Robots and Systems. Piscataway, USA: IEEE, 2018: 2245-2252. doi: 10.1109/IROS.2018.8593885
    [12]
    Katz B G. A low cost modular actuator for dynamic robots[D]. Boston, USA: MIT, 2018.
    [13]
    刘京运. 从Big Dog到Spot Mini: 波士顿动力四足机器人进化史[J]. 机器人产业, 2018(2): 109-116. doi: 10.3969/j.issn.2096-0182.2018.02.021

    Liu J Y. From Big Dog to Spot Mini: Evolution history of Boston Dynamics quadruped robot[J]. Robot Industry, 2018(2): 109-116. doi: 10.3969/j.issn.2096-0182.2018.02.021
    [14]
    荣学文. SCalf液压驱动四足机器人的机构设计与运动分析[D]. 济南: 山东大学, 2013. doi: 10.7666/d.Y2329553

    Rong X W. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Jinan: Shandong University, 2013. doi: 10.7666/d.Y2329553
    [15]
    柴汇, 孟健, 荣学文, 等. 高性能液压驱动四足机器人SCalf的设计与实现[J]. 机器人, 2014, 36(4): 385-391. doi: 10.13973/j.cnki.robot.2014.0385

    Chai H, Meng J, Rong X W, et al. Design and implementation of SCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014, 36(4): 385-391. doi: 10.13973/j.cnki.robot.2014.0385
    [16]
    Unitree. Laikago[EB/OL]. (2017-10-14)[2021-03-01]. http://www.unitree.cc/cn/e/action/ShowInfo.php?classid=6&id=1.
    [17]
    Unitree. Aliengo[EB/OL]. (2021-02-11)[2021-03-01]. http://www.unitree.cc/cn/e/action/ShowInfo.php?classid=6&id=359.
    [18]
    朱秋国. "绝影"机器人助力智慧安防[J]. 中国测绘, 2019(3): 31-33. doi: 10.3969/j.issn.1005-6831.2019.03.007

    Zhu Q G. "Jue Ying" robot helps intelligent security[J]. China Surveying and Mapping, 2019(3): 31-33. doi: 10.3969/j.issn.1005-6831.2019.03.007
    [19]
    Seok S, Wang A, Chuah M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2013: 3307-3312. doi: 10.1242/jeb.02400
    [20]
    Seok S, Wang A, Chuah M Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): 1117-1129. doi: 10.1109/TMECH.2014.2339013
    [21]
    Zhao Q, Ellenberger B, Sumioka H, et al. The effect of spine actuation and stiffness on a pneumatically-driven quadruped robot for cheetah-like locomotion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2013: 1807-1812. doi: 10.1109/ROBIO.2013.6739730
    [22]
    吴海波. 具有可变刚度的四足机器人仿生脊柱设计与应用研究[D]. 北京: 北京交通大学, 2016. doi: 10.7666/d.Y3124756

    Wu H B. Design of a bionic variable stiffness spine and its application to quadruped robot[D]. Beijing: Beijing Jiaotong University, 2016. doi: 10.7666/d.Y3124756
    [23]
    Wang C L, Wang S G. Bionic control of cheetah bounding with a segmented spine[J]. Applied Bionics and Biomechanics, 2016. doi: 10.1155/2016/5031586
    [24]
    聂华. 具柔性脊柱的四足机器人结构优化与控制[D]. 武汉: 华中科技大学, 2016. doi: 10.7666/d.D01078535

    Nie H. Research on structure optimization and control of quadruped robot with flexible spine[D]. Wuhan: Huazhong University of Science and Technology, 2016. doi: 10.7666/d.D01078535
    [25]
    谭小康. 具有主动脊柱的四足机器人结构设计与仿生控制研究[D]. 北京: 北京交通大学, 2018.

    Tan X K. Structural design and bionic control of a quadruped robot with actuated spine[D]. Beijing: Beijing Jiaotong University, 2018.
    [26]
    Raibert M H, Brown H B, Chepponis M Jr. Experiments in balance with a 3D one-legged hopping machine[J]. International Journal of Robotics Research, 1984, 3(2): 75-92. doi: 10.1177/027836498400300207
    [27]
    Raibert M H. Trotting, pacing and bounding by a quadruped robot[J]. Journal of Biomechanics, 1990, 23(1): 79-81, 83-98. doi: 10.1016/0021-9290(90)90043-3
    [28]
    Raibert M. H. Legged robots that balance[M]. Boston, USA: MIT Press, 1986.
    [29]
    Eckert P. Towards agility: Definition, benchmark and design considerations for small, quadrupedal robots[D]. Lausanne, Switzerland: Swiss Federal Institute of Technology in Lausanne, 2018. doi: 10.5075/epfl-thesis-8592

Catalog

    Article views (229) PDF downloads (446) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return