Citation: | WANG Qi, ZHANG Xiuli, JIANG Lei, HUANG Senwei, YAO Yan'an. A Cheetah-mimicking Quadruped Running Robot with 2DOF Articulated Trunk[J]. ROBOT, 2022, 44(3): 257-266. DOI: 10.13973/j.cnki.robot.210101 |
[1] |
Hildebrand M. Motions of the running cheetah and horse[J]. Journal of Mammalogy, 1959, 40(4): 481-495. doi: 10.2307/1376265
|
[2] |
Hildebrand M. Further studies on locomotion of the cheetah[J]. Journal of Mammalogy, 1961, 42(1): 84-91. doi: 10.2307/1377246
|
[3] |
Gambaryan P P. How mammals run: Anatomical adaptations[J]. BioScience, 1975, 25(8): 520. doi: 10.2307/1296969
|
[4] |
Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits[J]. Journal of Experimental Biology, 2006, 209(19): 3925-3939. doi: 10.1242/jeb.02400
|
[5] |
Alexander R M, Dimery N J, Ker R F. Elastic structures in the back and their role in galloping in some mammals[J]. Journal of Zoology, 1985, 207(4): 467-482. doi: 10.1111/j.1469-7998.1985.tb04944.x
|
[6] |
Gray J. How animals move[M]. Cambridge, UK: Cambridge University Press, 1953.
|
[7] |
Semini C, Tsagarakis N G, Guglielmino E, et al. Design of HyQ - A hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(I6): 831-849. doi: 10.1177/0959651811402275
|
[8] |
Semini C, Barasuol V, Goldsmith J, et al. Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 635-646. doi: 10.1109/TMECH.2016.2616284
|
[9] |
Hutter M, Gehring C, Jud D, et al. ANYmal - A highly mobile and dynamic quadrupedal robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2016: 38-44. doi: 10.1109/IROS.2016.7758092
|
[10] |
Park H W, Park S, Kim S. Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3D running of MIT Cheetah 2[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2015: 5163-5170. doi: 10.1109/ICRA.2015.7139918
|
[11] |
Bledt G, Powell M J, Katz B G, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//IEEE/RSJ International Conference of Intelligent Robots and Systems. Piscataway, USA: IEEE, 2018: 2245-2252. doi: 10.1109/IROS.2018.8593885
|
[12] |
Katz B G. A low cost modular actuator for dynamic robots[D]. Boston, USA: MIT, 2018.
|
[13] |
刘京运. 从Big Dog到Spot Mini: 波士顿动力四足机器人进化史[J]. 机器人产业, 2018(2): 109-116. doi: 10.3969/j.issn.2096-0182.2018.02.021
Liu J Y. From Big Dog to Spot Mini: Evolution history of Boston Dynamics quadruped robot[J]. Robot Industry, 2018(2): 109-116. doi: 10.3969/j.issn.2096-0182.2018.02.021
|
[14] |
荣学文. SCalf液压驱动四足机器人的机构设计与运动分析[D]. 济南: 山东大学, 2013. doi: 10.7666/d.Y2329553
Rong X W. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Jinan: Shandong University, 2013. doi: 10.7666/d.Y2329553
|
[15] |
柴汇, 孟健, 荣学文, 等. 高性能液压驱动四足机器人SCalf的设计与实现[J]. 机器人, 2014, 36(4): 385-391. doi: 10.13973/j.cnki.robot.2014.0385
Chai H, Meng J, Rong X W, et al. Design and implementation of SCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014, 36(4): 385-391. doi: 10.13973/j.cnki.robot.2014.0385
|
[16] |
Unitree. Laikago[EB/OL]. (2017-10-14)[2021-03-01]. http://www.unitree.cc/cn/e/action/ShowInfo.php?classid=6&id=1.
|
[17] |
Unitree. Aliengo[EB/OL]. (2021-02-11)[2021-03-01]. http://www.unitree.cc/cn/e/action/ShowInfo.php?classid=6&id=359.
|
[18] |
朱秋国. "绝影"机器人助力智慧安防[J]. 中国测绘, 2019(3): 31-33. doi: 10.3969/j.issn.1005-6831.2019.03.007
Zhu Q G. "Jue Ying" robot helps intelligent security[J]. China Surveying and Mapping, 2019(3): 31-33. doi: 10.3969/j.issn.1005-6831.2019.03.007
|
[19] |
Seok S, Wang A, Chuah M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2013: 3307-3312. doi: 10.1242/jeb.02400
|
[20] |
Seok S, Wang A, Chuah M Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): 1117-1129. doi: 10.1109/TMECH.2014.2339013
|
[21] |
Zhao Q, Ellenberger B, Sumioka H, et al. The effect of spine actuation and stiffness on a pneumatically-driven quadruped robot for cheetah-like locomotion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2013: 1807-1812. doi: 10.1109/ROBIO.2013.6739730
|
[22] |
吴海波. 具有可变刚度的四足机器人仿生脊柱设计与应用研究[D]. 北京: 北京交通大学, 2016. doi: 10.7666/d.Y3124756
Wu H B. Design of a bionic variable stiffness spine and its application to quadruped robot[D]. Beijing: Beijing Jiaotong University, 2016. doi: 10.7666/d.Y3124756
|
[23] |
Wang C L, Wang S G. Bionic control of cheetah bounding with a segmented spine[J]. Applied Bionics and Biomechanics, 2016. doi: 10.1155/2016/5031586
|
[24] |
聂华. 具柔性脊柱的四足机器人结构优化与控制[D]. 武汉: 华中科技大学, 2016. doi: 10.7666/d.D01078535
Nie H. Research on structure optimization and control of quadruped robot with flexible spine[D]. Wuhan: Huazhong University of Science and Technology, 2016. doi: 10.7666/d.D01078535
|
[25] |
谭小康. 具有主动脊柱的四足机器人结构设计与仿生控制研究[D]. 北京: 北京交通大学, 2018.
Tan X K. Structural design and bionic control of a quadruped robot with actuated spine[D]. Beijing: Beijing Jiaotong University, 2018.
|
[26] |
Raibert M H, Brown H B, Chepponis M Jr. Experiments in balance with a 3D one-legged hopping machine[J]. International Journal of Robotics Research, 1984, 3(2): 75-92. doi: 10.1177/027836498400300207
|
[27] |
Raibert M H. Trotting, pacing and bounding by a quadruped robot[J]. Journal of Biomechanics, 1990, 23(1): 79-81, 83-98. doi: 10.1016/0021-9290(90)90043-3
|
[28] |
Raibert M. H. Legged robots that balance[M]. Boston, USA: MIT Press, 1986.
|
[29] |
Eckert P. Towards agility: Definition, benchmark and design considerations for small, quadrupedal robots[D]. Lausanne, Switzerland: Swiss Federal Institute of Technology in Lausanne, 2018. doi: 10.5075/epfl-thesis-8592
|