Citation: | YANG Tianhao, LI Yunkai, WANG Yaxin, MENG Qinghao. Touch Gesture Recognition for Service Robots[J]. ROBOT, 2022, 44(3): 310-320. DOI: 10.13973/j.cnki.robot.210045 |
[1] |
邓卫斌, 于国龙. 社交机器人发展现状及关键技术研究[J]. 科学技术与工程, 2016, 16(12): 163-170. doi: 10.3969/j.issn.1671-1815.2016.12.027
Deng W B, Yu G L. Development and key technology of social robot[J]. Science Technology and Engineering, 2016, 16(12): 163-170. doi: 10.3969/j.issn.1671-1815.2016.12.027
|
[2] |
Keshmiri S, Shiomi M, Sumioka H, et al. Gentle versus strong touch classification: Preliminary results, challenges, and potentials[J]. Sensors, 2020, 20(11). doi: 10.3390/s20113033
|
[3] |
Hertenstein M J, Holmes R, McCullough M, et al. The communication of emotion via touch[J]. Emotion, 2009, 9(4): 566-573. doi: 10.1037/a0016108
|
[4] |
彭玉青, 赵晓松, 陶慧芳, 等. 复杂背景下基于深度学习的手势识别[J]. 机器人, 2019, 41(4): 534-542. doi: 10.13973/j.cnki.robot.180568
Peng Y Q, Zhao X S, Tao H F, et al. Hand gesture recognition against complex background based on deep learning[J]. Robot, 2019, 41(4): 534-542. doi: 10.13973/j.cnki.robot.180568
|
[5] |
Li Y K, Wang B W, Li Y Y, et al. Design and output characteristics of magnetostrictive tactile sensor for detecting force and stiffness of manipulated objects[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1219-1225. doi: 10.1109/TII.2018.2862912
|
[6] |
Šabanović S, Bennett C C, Chang W L, et al. PARO robot affects diverse interaction modalities in group sensory therapy for older adults with dementia[C]//IEEE 13th International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2013. doi: 10.1109/ICORR.2013.6650427
|
[7] |
Saunderson S, Nejat G. How robots influence humans: A survey of nonverbal communication in social human-robot interaction[J]. International Journal of Social Robotics, 2019, 11(4): 575-608. doi: 10.1007/s12369-019-00523-0
|
[8] |
Jung M M, Poel M, Poppe R, et al. Automatic recognition of touch gestures in the corpus of social touch[J]. Journal on Multimodal User Interfaces, 2017, 11(1): 81-96. doi: 10.1007/s12193-016-0232-9
|
[9] |
Jung M M, Poppe R, Poel M, et al. Touching the void - Introducing CoST: corpus of social touch[C]//16th International Conference on Multimodal Interaction. New York, USA: ACM, 2014: 120-127. doi: 10.1145/2663204.2663242
|
[10] |
van Wingerden S, Uebbing T J, Jung M M, et al. A neural network based approach to social touch classification[C]// 2014 Workshop on Emotion Representation and Modelling in Human-Computer-Interaction-Systems. New York, USA: ACM, 2014: 7-12. doi: 10.1145/2668056.2668060
|
[11] |
Yohanan S, MacLean K E. The role of affective touch in human-robot interaction: Human intent and expectations in touching the haptic creature[J]. International Journal of Social Robotics, 2012, 4(2): 163-180. doi: 10.1007/s12369-011-0126-7
|
[12] |
Hughes D, Farrow N, Profita H, et al. Detecting and identifying tactile gestures using deep autoencoders, geometric moments and gesture level features[C]//ACM International Conference on Multimodal Interaction. New York, USA: ACM, 2015: 415-422. doi: 10.1145/2818346.2830601
|
[13] |
Ta V C, Johal W, Portaz M, et al. The Grenoble system for the social touch challenge at ICMI 2015[C]//ACM International Conference on Multimodal Interaction. New York, USA: ACM, 2015: 391-398. doi: 10.1145/2818346.2830598
|
[14] |
Altuglu T B, Altun K. Recognizing touch gestures for social human-robot interaction[C]//ACM International Conference on Multimodal Interaction. New York, USA: ACM, 2015: 407-413. doi: 10.1145/2818346.2830600
|
[15] |
Hughes D, Krauthammer A, Correll N. Recognizing social touch gestures using recurrent and convolutional neural networks[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2017: 2315-2321. doi: 10.1109/ICRA.2017.7989267
|
[16] |
Albawi S, Bayat O, Al-Azawi S, et al. Social touch gesture recognition using convolutional neural network[J]. Computational Intelligence and Neuroscience, 2018. doi: 10.1155/2018/6973103
|
[17] |
Altun K, MacLean K E. Recognizing affect in human touch of a robot[J]. Pattern Recognition Letters. 2015, 66(15): 31-40. doi: 10.1016/j.patrec.2014.10.016
|
[18] |
Gamboa-Montero J J, Alonso-Martin F, Castillo J C, et al. Detecting, locating and recognising human touches in social robots with contact microphones[J]. Engineering Applications of Artificial Intelligence, 2020, 92. doi: 10.1016/j.engappai.2020.103670
|
[19] |
许会超, 苗新刚, 汪苏. 基于FBG的机器人柔性触觉传感器[J]. 机器人, 2018, 40(5): 634-639, 722. doi: 10.13973/j.cnki.robot.180045
Xu H C, Miao X G, Wang S. A flexible tactile sensor for robot based on FBG[J]. Robot, 2018, 40(5): 634-639, 722. doi: 10.13973/j.cnki.robot.180045
|
[20] |
Silvera-Tawil D, Rye D, Velonaki M. Interpretation of social touch on an artificial arm covered with an EIT-based sensitive skin[J]. International Journal of Social Robotics, 2014, 6(4): 489-505. doi: 10.1007/s12369-013-0223-x
|
[21] |
Someya T, Sekitani T, Iba S, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications[J]. PNAS, 2004, 101(27): 9966-9970. doi: 10.1073/pnas.0401918101
|
[22] |
Wang X W, Gu Y, Xiong Z P, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9): 1336-1342. doi: 10.1002/adma.201304248
|
[23] |
Zhao X, Zhang Z, Liao Q, et al. Self-powered user-interactive electronic skin for programmable touch operation platform[J]. Science Advances, 2020, 6(28). doi: 10.1126/sciadv.aba4294
|
[24] |
Fang B, Sun F C, Liu H P, et al. Wearable technology for robotic manipulation and learning[M]. Singapore: Springer, 2020. doi: 10.1007/978-981-15-5124-6
|
[25] |
Sundaram S, Kellnhofer P, Li Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702. doi: 10.1038/s41586-019-1234-z
|
[26] |
Kale S, Mane S, Patil P. Wearable biomedical parameter monitoring system: A review[C]//International Conference of Electronics, Communication and Aerospace Technology. Piscataway, USA: IEEE, 2017: 614-617. doi: 10.1109/ICECA.2017.8203611
|
[27] |
Flagg A, MacLean K. Affective touch gesture recognition for a furry zoomorphic machine[C]//7th International Conference on Tangible, Embedded and Embodied Interaction. New York, USA: ACM, 2013: 25-32. doi: 10.1145/2460625.2460629
|
[28] |
Russell J A, Weiss A, Mendelsohn G A. Affect grid: A single-item scale of pleasure and arousal[J]. Journal of Personality and Social Psychology, 1989, 57: 493-502. doi: 10.1037/0022-3514.57.3.493
|
[29] |
Ekman P. An argument for basic emotions[J]. Cognition and Emotion, 1992, 6(3-4): 169-200. doi: 10.1080/02699939208411068
|
[30] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
[31] |
Tran D, Wang H, Torresani L, et al. A closer look at spatio-temporal convolutions for action recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2018: 6450-6459. doi: 10.1109/CVPR.2018.00675
|
[32] |
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//14th International Conference on Artificial Intelligence and Statistics. 2011: 315-323.
|
[33] |
Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
[34] |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//32nd International Conference on Machine Learning. New York, USA: ACM, 2015: 448-456.
|
[35] |
Krauledat M, Tangermann M, Blankertz B, et al. Towards zero training for brain-computer interfacing[J]. PLoS One, 2008, 3(8). doi: 10.1371/journal.pone.0002967
|
[36] |
Li X, Song D, Zhang P, et al. Exploring EEG features in cross-subject emotion recognition[J]. Frontiers in Neuroscience, 2018, 12. doi: 10.3389/fnins.2018.00162
|
[37] |
Jones S E, Brown B C. Touch attitudes and behaviors, recollections of early childhood touch, and social self-confidence[J]. Journal of Nonverbal Behavior, 1996, 20(3): 147-163. doi: 10.1007/BF02281953
|
[38] |
Deethardt J F, Hines D G. Tactile communication and personality differences[J]. Journal of Nonverbal Behavior, 1983, 8(2): 143-156. doi: 10.1007/BF00987000
|