Citation: | NIU Jie, BU Xiongzhu, QIAN Kun, LI Zhong. An Indoor Scene Recognition Method Combining Global and Saliency Region Features[J]. ROBOT, 2015, 37(1): 122-128. DOI: 10.13973/j.cnki.robot.2015.122 |
[1] |
Thrun S, Burgard W, Fox D. Probabilistic robotics[M]. Cambridge, USA: MIT, 2005.
|
[2] |
Vailaya A, Jain A, Zhang H J. On image classification: City vs. landscape[C]//IEEE Workshop on Content-Based Access of Image and Video Libraries. Piscataway, USA: IEEE, 1998: 3-8.
|
[3] | |
[4] |
钱堃,马旭东,戴先中,等.基于层次化SLAM 的未知环境级联地图创建方法[J].机器人,2011,33(6):736-741.
Qian K, Ma X D, Dai X Z, et al. A layered SLAM based approach for unknown environment hierarchical mapping building[J]. Robot, 2011, 33(6): 736-741.
|
[5] |
包加桐,宋爱国,郭晏,等.基于SURF特征跟踪的动态手势识别算法[J].机器人,2011,33(4):482-489.
Bao J T, Song A G, Guo Y, et al. Dynamic hand gesture recognition based on SURF tracking[J]. Robot, 2011, 33(4): 482-489.
|
[6] |
Zhang H B, Su S Z, Li S Z, et al. Seeing actions through scene context[C]//IEEE International Conference on Visual Communications and Image Processing. Piscataway, USA: IEEE, 2013: 1-6.
|
[7] |
Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2006: 2169-2178.
|
[8] |
Parizi S N, Oberlin J G, Felzenszwalb P F. Reconfigurable models for scene recognition[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2012: 2775-2782.
|
[9] |
Zhao Z S, Feng X, Wei F, et al. Learning representative features for robot topological localization[J]. International Journal of Advanced Robotic Systems, 2013, 10: 1-12.
|
[10] |
Wang R, Wang Z L, Ma X R. Indoor scene classification based on the bag-of-words model of local feature information gain[J]. IEICE Transactions on Information and Systems, 2013, 96(4): 984-987.
|
[11] |
Espinace P, Kollar T, Soto A, et al. Indoor scene recognition through object detection[C]//2010 IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2010: 1406-1413.
|
[12] | |
[13] | |
[14] |
朱博,戴先中,李新德,等.基于“原型”的机器人开放式室内场所感知实验研究[J].机器人,2013,35(4):491-499,512.
Zhu B, Dai X Z, Li X D, et al. Experimental study on open interior-places perception of robot based on ''prototype''[J]. Robot, 2013, 35(4): 491-499,512.
|
[15] |
Bengio Y. Deep learning of representations: Looking forward[C]//1st International Conference on LSP, Vol.7978. Berlin, German: Springer, 2013: 1-37.
|
[16] |
Calonder M, Lepetit V, Strecha C, et al. Brief: Binary robust independent elementary features[C]//11th European Conference on Computer Vision, Vol.6314. Berlin, German: Springer, 2010: 778-792.
|
[17] |
Arandjelovic R, Zisserman A. Three things everyone should know to improve object retrieval[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2012: 2911-2918.
|
[18] |
Nister D, Stewenius H. Scalable recognition with a vocabulary tree[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2006: 2161-2168.
|
[19] |
Gehler P, Nowozin S. On feature combination for multiclass object classification[C]//12th International Conference on Computer Vision. Piscataway, USA: IEEE, 2009: 221-228.
|
[20] | |
[21] |
Rifai S, Mesnil G, Vincent P, et al. Higher order contractive auto-encoder[C]//European Conference on ECML PKDD, Vol.6912. Berlin,German: Springer, 2011: 645-660.
|
[22] |
Zhong S H, Liu Y, Liu Y. Bilinear deep learning for image classification[C]//19th ACM International Conference on Multimedia. New York, USA: ACM, 2011: 343-352.
|
[23] |
Lee J, Lim J H, Choi H, et al. Multiple kernel learning with hierarchical feature representations[C]//20th International Conference on Neural Information Processing. Berlin, German: Springer, 2013: 517-524.
|
[24] |
Orabona F, Jie L. Ultra-fast optimization algorithm for sparse multi kernel learning[C]//28th International Conference on Machine Learning. Washington, USA: IMLS, 2011.
|
[25] |
Shrivastava A, Mmlisiewicz T, Gupta A, et al. Data-driven visual similarity for cross-domain image matching[C]//SIGGRAPH Asia Conference. New York, USA: ACM, 2011: 154:1-154:10.
|
[26] |
Harel J, Koch C, Perona P. Graph-based visual saliency[C]// Advances in Neural Information Processing Systems. Cambridge, USA: MIT, 2006: 545-552.
|
[27] |
Altman N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3): 175-185.
|
[28] |
Zhou S S, Chen Q C, Wang X L. Discriminate deep belief networks for image classification[C]//17th IEEE International Conference on Image Processing. Piscataway, USA: IEEE, 2010: 1561-1564.
|
[29] |
Jarrett K, Kavukcuoglu K, Ranzato M, et al. What is the best multi-stage architecture for object recognition?[C]//12th International Conference on Proceedings of the Computer Vision. Piscataway, USA: IEEE, 2009: 2146- 2153
|
[30] |
Quattoni A, Torralba A. Recognizing indoor scenes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2009: 413-420.
|
[31] |
Zhou L, Zhou Z, Hu D. Scene classification using multi-resolution low-level feature combination[J]. Neurocomputing, 2013, 122: 284-297.
|