FAN Zenghua, RONG Weibin, WANG Lefeng, SUN Lining. Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface[J]. ROBOT, 2015, 37(6): 648-654. DOI: 10.13973/j.cnki.robot.2015.0648
Citation: FAN Zenghua, RONG Weibin, WANG Lefeng, SUN Lining. Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface[J]. ROBOT, 2015, 37(6): 648-654. DOI: 10.13973/j.cnki.robot.2015.0648

Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface

More Information
  • Received Date: May 06, 2015
  • Revised Date: September 08, 2015
  • Available Online: October 26, 2022
  • Published Date: November 19, 2015
  • On the basis of the presented micromanipulation method of condensation on hydrophobic surface, the volume of the water droplet on the hydrophobic tip surface can be dynamically varied which helps to obtain appropriate capillary lifting forces using the designed droplet micromanipulator. The single droplet growth model is established to analyze the influence of the minimum radius of droplet, the supercooling degree and the saturation temperature. Accordingly, the operational process of picking up and releasing are discussed by the theoretical models. With the assistance of a customized motion platform, the droplet formation on hydrophobic tip and the capillary lifting force generated during the manipulation process are experimentally characterized. Micromanipulation tasks of pick-and-place the micro silicon chips(1 mm×1 mm×0.52 mm, 12.1μN) and thin-wall microspheres with diameters of 200μm, wall thickness of 4μm(5.069 nN) are conducted to verify the feasibility of the presented method.
  • [1]
    Nah S K, Zhong Z W. A microgripper using piezoelectric actuation for micro-object manipulation[J]. Sensors and Actuators A:Physical, 2007, 133(1):218-224.  
    [2]
    韩江义,游有鹏,王化明,等.夹钳式力反馈遥微操作系统的设计与试验[J].机器人,2010,32(2):184-189.

    Han J Y, You Y P, Wang H M, et al. Design and experiments of clamp type force-feedback tele-micromanipulation system[J]. Robot, 2010, 32(2):184-189.
    [3]
    Chen T, Sun L N, Chen L G, et al. A hybrid-type electrostatically driven microgripper with an integrated vacuum tool[J]. Sensors and Actuators A:Physical, 2010, 158(2):320-327.  
    [4]
    Chu J K, Zhang R, Chen Z P. A novel SU-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method[J]. Journal of Micromechanics and Microengineering, 2011, 21(5):No.054030.
    [5]
    Kim D H, Lee M G, Kim B, et al. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors:A numerical and experimental study[J]. Smart Materials and Structures, 2005, 14(6):1265-1272.  
    [6]
    Kohl M, Krevet B, Just E. SMA microgripper system[J]. Sensors and Actuators A:Physical, 2002, 97-98:646-652.
    [7]
    Ford S, Macias G, Lumia R. Single active finger IPMC microgripper[J]. Smart Materials and Structures, 2015, 24(2):No.025015.
    [8]
    Rong W B, Fan Z H, Wang L F, et al. A vacuum microgripping tool with integrated vibration releasing capability[J]. Review of Scientific Instruments, 2014, 85(8):No.085002.
    [9]
    Feddema J T, Xavier P, Brown R. Micro-assembly planning with van der Waals force[J]. Journal of Micromechatronics, 2001, 1(2):139-153.  
    [10]
    Al Amin A, Jagtiani A, Vasudev A, et al. Soft microgripping using ionic liquids for high temperature and vacuum applications[J]. Journal of Micromechanics and Microengineering, 2011, 21(12):No.125025.
    [11]
    Vasudev A, Zhe J. A capillary microgripper based on electrowetting[J]. Applied Physics Letters, 2008, 93(10):No.103503.
    [12]
    Fantoni G, Hansen H N, Santochi M. A new capillary gripper for mini and micro parts[J]. CIRP Annals- Manufacturing Technology, 2013, 62(1):17-20.  
    [13]
    Lambert P, Seigneur F, Koelemeijer S, et al. A case study of surface tension gripping:The watch bearing[J]. Journal of Micromechanics and Microengineering, 2006, 16(7):1267-1276.  
    [14]
    Fuchiwaki O, Kumagai K. Development of wet tweezers based on capillary force for complex-shaped and heterogeneous micro-assembly[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:1003-1009.
    [15]
    张勤,甘裕明,黄维军.液滴微操作机械手的机理分析与实验[J].机器人,2014,36(4):430-435,445.

    Zhang Q, Gan Y M, Huang W J, et al. Mechanism analysis and experiments of liquid-drop micromanipulator[J]. Robot, 2014, 36(4):430-435,445.
    [16]
    Wang L F, Rong W B, Sun L N, et al. Capillary forces between submillimeter spheres and flat surfaces at constant liquid volumes[J]. Chinese Physics Letters, 2009, 26(12):198-201.
    [17]
    Wang L F, Régnier S. Capillary force between a probe tip with a power-law profile and a surface or a nanoparticle[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23(1):No.015001.
    [18]
    Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8):No.081502.
    [19]
    Lambert P. Capillary forces in microassembly:Modeling, simulation, experiments, and case study[M]. Berlin, Germany:Springer Science and Business Media, 2007.
    [20]
    Fan Z H, Wang L F, Rong W B, et al. Dropwise condensation on a hydrophobic probe-tip for manipulating micro-objects[J]. Applied Physics Letters, 2015, 106(8):No.084105.
    [21]
    Obata K J, Motokado T, Saito S, et al. A scheme for micro-manipulation based on capillary force[J]. Journal of Fluid Mechanics, 2004, 498:113-121.

Catalog

    Article views (46) PDF downloads (455) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return