ZHANG Weidong, ZHANG Wei, LI Zhenpeng, GU Jianjun. Visual Features for Long-Range Terrain Perception[J]. ROBOT, 2015, 37(3): 369-375. DOI: 10.13973/j.cnki.robot.2015.0369
Citation: ZHANG Weidong, ZHANG Wei, LI Zhenpeng, GU Jianjun. Visual Features for Long-Range Terrain Perception[J]. ROBOT, 2015, 37(3): 369-375. DOI: 10.13973/j.cnki.robot.2015.0369

Visual Features for Long-Range Terrain Perception

More Information
  • Received Date: November 24, 2014
  • Revised Date: April 01, 2015
  • Published Date: May 19, 2015
  • A visual features based long-range terrain perception method for mobile robots is presented. This approach follows a near-to-far learning procedure. Firstly, the obtained image is segmented and the scale is normalized. Then, hue features for representing the color information and LBP (local binary pattern) features for representing the texture information are extracted. Next, the near field terrain samples are labelled obstacle and ground using stereo vision, and then a classifier is trained with these labelled samples to classify the rest unknown samples. Finally, confidence values are defined based on posterior probability to reclassify the low confident samples for further improving the classification accuracy. Experiment results show that the proposed approach can achieve long-range terrain perception accurately and stably.
  • [1]
    Bhoite A, Beke N, Nanduri S, et al. Advanced situational awareness and obstacle detection using a monocular camera[C]// Western New York Image Processing Workshop. Piscataway, USA: IEEE, 2010: 30-33.
    [2]
    Xia Y Q, Zhi J, Huang M, et a1. An obstacle segmentation approach in ALV system[C]//2th International Symposium on Intelligent Information Technology Application. Piscataway, \linebreak USA: IEEE, 2008: 259-262.
    [3]
    Pantilie C D, Nedevschi S. Real-time obstacle detection in complex scenarios using dense stereo vision and optical flow[C]// 13th International IEEE Conference on Intelligent Transportation Systems. Piscataway, USA: IEEE, 2010: 439-444.
    [4]
    Ventroux N, Schmit R, Pasquet F, et al. Stereovision-based 3D obstacle detection for automotive safety driving assistance[C]// 12th International IEEE Conference on Intelligent Transportation Systems. Piscataway, USA: IEEE, 2009: 394-399.
    [5]
    Cong Y, Peng J J, Sun J, et al. V-disparity based UGV obstacle detection in rough outdoor terrain[J]. Acta Automatica Sinica, 2010, 36(5): 667-673.
    [6]
    Zhu X Z, Lu H M, Yang X R, et al. Stereo vision based traversable region detection for mobile robots using U-V-disparity[C]//32th Chinese Control Conference. Piscataway, China: IEEE, 2013: 5785-5790.
    [7]
    Hadsell R, Sermanet P, Ben J, et a1. Learning long-range vision for autonomous off-road driving[J]. Journal of Field Robotics, 2009, 26(2): 120-144.
    [8]
    Procopio M J, Mulligan J, Grudic G. Coping with imbalanced training data for improved terrain prediction in autonomous outdoor robot navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2010: 518-525.
    [9]
    Procopio M J, Mulligan J, Grudic G. Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments[J]. Journal of Field Robotics, 2009, 26(2): 145-175.
    [10]
    Gevers T, Stokman H. Robust histogram construction from color invariants for object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 113-118.
    [11]
    van de Weijer J, Schmid C. Coloring local feature extraction[C]//9th European Conference on Computer Vision. Berlin, Germany: Springer-Verlag, 2006: 334-348.
    [12]
    Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//12th International Conference on Pattern Recognition. Piscataway, USA: IEEE, 1994: 582-585.
    [13]
    Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
    [14]
    Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [15]
    Chang C C, Lin C J. LIBSVM: A library for support vector machines[OL]. (2013-04-04) [2014-11-01]. http://www.csie. ntu.edu.tw/~ cjlin/papers/libsvm.pdf.
    [16]
    Mousazadeh H. A technical review on navigation systems of agricultural autonomous off-road vehicles[J]. Journal of Terramechanics, 2013, 50(3): 211-232.
    [17]
    Procopio M J. An experimental analysis of classifier ensembles for learning drifting concepts over time in autonomous outdoor robot navigation[D]. Boulder, USA: University of Colorado at Boulder, 2007.
    [18]
    朱效洲,李宇波,卢惠民,等.基于视觉的移动机器人可通行区域识别研究综述 [J].计算机应用研究,2012,29(6):2009-2013.Zhu X Z, Li Y B, Lu H M, et al. Research on vision-based traversable region recognition for mobile robots[J]. Application Research of Computers, 2012, 29(6): 2009-2013.
    [19]
    王明军,周俊,屠珺,等.基于条件随机场的大范围地形感知框架 [J].机器人,2010,32(3):326-333.Wang M J, Zhou J, Tu J, et a1. Long-range terrain perception based on conditional random fields[J]. Robot, 2010, 32(3): 326-333.
    [20]
    Halatci I, Brooks C A, Iagnemma K. Terrain classification and classifier fusion for planetary exploration rovers[C]//IEEE Aerospace Conference. Piscataway, USA: IEEE, 2007: 1-11.

Catalog

    Article views (67) PDF downloads (486) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return