Citation: | LONG Yi, DU Zhijiang, WANG Weidong. Control and Experiment for Exoskeleton Robot Based on Kalman Prediction ofHuman Motion Intent[J]. ROBOT, 2015, 37(3): 304-309. DOI: 10.13973/j.cnki.robot.2015.0304 |
[1] |
Najarian K, Splinter R. Biomedical signal and image processing[ M]. Boca Raton, USA: CRC Press, 2012.
|
[2] |
Yin Y H, Fan Y J, Xu L D. EMG and EPP-integrated human- machine interface between the paralyzed and rehabilitation exoskeleton[ J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 542-549.
|
[3] |
George T, Shalu G K, Sivanandan K S. Sensing, processing and application of EMG signals for HAL (hybrid assistive limb)[ C]//International Conference on Sustainable Energy and Intelligent Systems. Stevenage, UK: IET, 2011: 749-753.
|
[4] |
Kasaoka K, Sankai Y. Predictive control estimating operator’s intention for stepping-up motion by exo-skeleton type power assist system HAL[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, vo1.3. Piscataway, USA: IEEE, 2001: 1578-1583.
|
[5] |
Kawamoto H, Lee S, Kanbe S, et al. Power assist method for HAL-3 using EMG-based feedback controller[C]//IEEE International Conference on Systems, Man and Cybernetics, vo1.2. Piscataway, USA: IEEE, 2003: 1648-1653.
|
[6] |
Lee S, Sankai Y. Power assist control for walking aid with HAL- 3 based on EMG and impedance adjustment around knee joint[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2002: 1499-1504.
|
[7] |
Kiguchi K, Imada Y. EMG-based control for lower-limb powerassist exoskeletons[C]//IEEEWorkshop on Robotic Intelligence in Informationally Structured Space. Piscataway, USA: IEEE, 2009: 19-24.
|
[8] |
Fleischer C, Hommel G. A human-exoskeleton interface utilizing electromyography[J]. IEEE Transactions on Robotics, 2008, 24(4): 872-882.
|
[9] |
Chan F H Y, Yang Y S, Lam F K, et al. Fuzzy EMG classification for prosthesis control[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(3): 305-311.
|
[10] |
Lenzi T, De Rossi S M M, Vitiello N, et al. Intention-based EMG control for powered exoskeletons[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2180-2190.
|
[11] |
Kiguchi K, Tanaka T, Fukuda T. Neuro-fuzzy control of a robotic exoskeleton with EMG signals[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(4): 481-490.
|
[12] |
Taslim Reza S M, Ahmad N, Choudhury I A, et al. A study on muscle activities through surface EMG for lower limb exoskeleton controller[C]//IEEE Conference on Systems, Process & Control. Piscataway, USA: IEEE, 2013: 159-163.
|
[13] |
杨智勇,归丽华,杨秀霞,等.骨骼服直接力控制方法研 究与仿真[J].系统仿真学报,2009(24):7868-7872. Yang Z Y, Gui L H, Yang X X, et al. Research and simulation of exoskeleton suit’s direct force control[J]. Journal of System Simulation, 2009(24): 7868-7872.
|
[14] |
Dollar A M, Herr H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art[J]. IEEE Transactions on Robotics, 2008, 24(1): 144-158.
|
[15] |
Yoshimitsu T, Yamamoto K. Development of a power assist suit for nursing work[C]//SICE Annual Conference, vol.1. Piscataway, USA: IEEE, 2004: 577-580.
|
[16] |
Yamamoto K, Ishii M, Noborisaka H, et al. Stand alone wearable power assisting suit-sensing and control systems[C]//13th IEEE International Workshop on Robot and Human Interactive Communication. Piscataway, USA: IEEE, 2004: 661-666.
|
[17] |
Chen S Y. Kalman filter for robot vision: A survey[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4409- 4420.
|
[18] |
Dini D H, Mandic D P, Julier S J. A widely linear complex unscented Kalman filter[J]. IEEE Signal Processing Letters, 2011, 18(11): 623-626.
|
[19] |
Winter D A. Biomechanics of human movement[M]. New York, USA: Wiley, 1979.
|
[20] |