XIE Qiaolian, MENG Qiaoling, ZENG Qingxin, DAI Yue, WU Zhiyu, CHEN Liyu, YU Hongliu. Design of a Soft Wrist Exoskeleton Based on SMA Actuator Module[J]. ROBOT, 2021, 43(4): 406-413. DOI: 10.13973/j.cnki.robot.200584
Citation: XIE Qiaolian, MENG Qiaoling, ZENG Qingxin, DAI Yue, WU Zhiyu, CHEN Liyu, YU Hongliu. Design of a Soft Wrist Exoskeleton Based on SMA Actuator Module[J]. ROBOT, 2021, 43(4): 406-413. DOI: 10.13973/j.cnki.robot.200584

Design of a Soft Wrist Exoskeleton Based on SMA Actuator Module

More Information
  • Received Date: December 30, 2020
  • Revised Date: May 06, 2021
  • Available Online: October 26, 2022
  • Published Date: July 14, 2021
  • A soft wrist exoskeleton based on shape memory alloy (SMA) actuator module is proposed to address the problems of exoskeleton robots in bionics, portability and human-robot interaction. Firstly, the maximum recoverable tensile length and phase transition temperature characteristics of SMA spring are studied, and a hybrid model of SMA spring and manganese steel for SMA actuator module is established. Then, the parameters of the hybrid model are optimized according to the motion range and the required tension of human wrist joint. Finally, a cooling method for SMA springs is proposed by mixing elastic element potential energy, air cooling and high and low current switching, and a control method is designed based on motion angle and phase transition temperature feedback. To verify the practical effect of the soft wrist exoskeleton, wear training and temperature measurement experiments are carried out. The experimental results show that the bionics and flexibility of the exoskeleton conforms to the movement characteristics of the human wrist, and its light weight and portability can improve the assistance effect in daily living activities.
  • [1]
    Zhou M G, Wang H D, Zeng X Y, et al.Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. The Lancet, 2019, 394(10204): 1145-1158.
    [2]
    刘自文, 赵亮, 于鹏, 等.柔性外骨骼手的抓取力控制方法[J].机器人, 2019, 41(4):483-492.

    Liu Z W, Zhao L, Yu P, et al. A control method of grasping force for soft exoskeleton hand[J]. Robot, 2019, 41(4): 483-492.
    [3]
    赵新刚, 谈晓伟, 张弼.柔性下肢外骨骼机器人研究进展及关键技术分析[J].机器人, 2020, 42(3):365-384.

    Zhao X G, Tan X W, Zhang B. Development of soft lower extremity exoskeleton and its key technologies: A survey[J]. Robot, 2020, 42(3): 365-384.
    [4]
    王群, 黄真.脑卒中偏瘫患者上肢功能的生物力学机制研究[J].中华物理医学与康复杂志, 2016, 38(12):951-954.

    Wang Q, Huang Z. Study on the biomechanical mechanism of upper limb function in stroke patients with hemiplegia[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2016, 38(12): 951-954.
    [5]
    Kwakkel G, Kollen B J, Wagenaar R C.Therapy impact on functional recovery in stroke rehabilitation[J]. Physiotherapy, 1999, 85(7): 377-391.
    [6]
    Cao W J, Chen C J, Hu H Y, et al.Effect of hip assistance modes on metabolic cost of walking with a soft exoskeleton[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 426-436.
    [7]
    孙定阳, 沈浩, 郭朝, 等.绳驱动柔性上肢外骨骼机器人设计与控制[J].机器人, 2019, 41(6):834-841.

    Sun D Y, Shen H, Guo C, et al. Design and control of the cable driven compliant upper limb exoskeleton robot[J]. Robot, 2019, 41(6): 834-841.
    [8]
    Veale A J, Xie S Q.Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies[J]. Medical Engineering & Physics, 2016, 38(4): 317-325.
    [9]
    Xiloyannis M, Chiaradia D, Frisoli A, et al.Physiological and kinematic effects of a soft exosuit on arm movements[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16. DOI: 10. 1186/s12984-019-0495-y.
    [10]
    Xiloyannis M, Cappello L, Binh K D, et al.Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living[J]. Journal of Rehabi-litation and Assistive Technologies Engineering, 2017, 4. DOI: 10.1177/2055668316680315.
    [11]
    Chiaradia D, Tiseni L, Xiloyannis M, et al.An assistive soft wrist exosuit for flexion movements with an ergonomic reinforced glove[J]. Frontiers in Robotics and AI, 2021. DOI: 10. 3389/frobt.2020.595862.
    [12]
    Polygerinos P, Wang Z, Galloway K C, et al.Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135-143.
    [13]
    Andrikopoulos G, Nikolakopoulos G, Manesis S.Motion control of a novel robotic wrist exoskeleton via pneumatic muscle actuators[C]//IEEE 20th Conference on Emerging Technologies & Factory Automation. Piscataway, USA: IEEE, 2015. DOI: 10. 1109/ETFA.2015.7301464.
    [14]
    姚建涛, 李海利, 曹开彬, 等.柔性可穿戴腕部动力手套的设计与分析[J].机械工程学报, 2018, 54(19):1-9.

    Yao J T, Li H L, Cao K B, et al. Design and analysis of flexible wearable wrist power glove[J]. Journal of Mechanical Engineering, 2018, 54(19): 1-9.
    [15]
    Higuma T, Kiguchi K, Arata J.Low-profile two-degree-of-freedom wrist exoskeleton device using multiple spring blades [J]. IEEE Robotics and Automation Letters, 2018, 3(1): 305-311.
    [16]
    Park S J, Park C H.Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle[J]. Scientific Reports, 2019, 9. DOI: 10.1038/s41598-019-45722-x.
    [17]
    Park S J, Kim U, Park C H.A novel fabric muscle based on shape memory alloy springs[J]. Soft Robotics, 2020, 7(3): 321-331.
    [18]
    Jeong J, Yasir I B, Han J, et al.Design of shape memory alloy-based soft wearable robot for assisting wrist motion[J]. Applied Sciences, 2019, 9(19). DOI: 10.3390/app9194025.
    [19]
    张忠强, 邹娇, 丁建宁, 等.软体机器人驱动研究现状[J].机器人, 2018, 40(5):648-659.

    Zhang Z Q, Zou J, Ding J N, et al. Research status of the soft robot driving[J]. Robot, 2018, 40(5): 648-659.
    [20]
    杨浩.仿象鼻机械臂的运动学分析及实验[J].机器人, 2017, 39(5):585-594.

    Tian J W, Wang T M, Shi Z Y, et al. Kinematics analysis and experiment of an elephant-trunk-like robot arm[J]. Robot, 2017, 39(5): 585-594.
    [22]
    Howell L L.柔顺机构学[M].北京:高等教育出版社, 2007.

    Howell L L. Compliance mechanism[M]. Beijing: Higher Education Press, 2007.
    [23]
    Neumann D A.基于Matlab的人体上肢运动分析及仿真[D].天津:天津科技大学, 2003.

    Zhang A L. Analysis and simulation of human upper limb movement based on Matlab[D]. Tianjin: Tianjin University of Science and Technology, 2003.
    [25]
    李瑞.形状记忆合金柔性驱动器的特性分析与控制研究[D].广州:华南理工大学, 2019.

    Li R. Characteristic analysis and control research of shape memory alloy flexible actuator[D]. Guangzhou: South China University of Technology, 2019.
    [26]
    李晓光, 张弼, 赵新刚, 等.形状记忆合金驱动器的自适应滑模反步控制[J].控制理论与应用, 2020, 37(1):137-146.

    Li X G, Zhang B, Zhao X G, et al. Adaptive backstepping sliding mode controller for a shape memory alloy actuator[J]. Control Theory & Applications, 2020, 37(1): 137-146.

Catalog

    Article views (174) PDF downloads (332) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return