Citation: | XIE Qiaolian, MENG Qiaoling, ZENG Qingxin, DAI Yue, WU Zhiyu, CHEN Liyu, YU Hongliu. Design of a Soft Wrist Exoskeleton Based on SMA Actuator Module[J]. ROBOT, 2021, 43(4): 406-413. DOI: 10.13973/j.cnki.robot.200584 |
[1] |
Zhou M G, Wang H D, Zeng X Y, et al.Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. The Lancet, 2019, 394(10204): 1145-1158.
|
[2] |
刘自文, 赵亮, 于鹏, 等.柔性外骨骼手的抓取力控制方法[J].机器人, 2019, 41(4):483-492.
Liu Z W, Zhao L, Yu P, et al. A control method of grasping force for soft exoskeleton hand[J]. Robot, 2019, 41(4): 483-492.
|
[3] |
赵新刚, 谈晓伟, 张弼.柔性下肢外骨骼机器人研究进展及关键技术分析[J].机器人, 2020, 42(3):365-384.
Zhao X G, Tan X W, Zhang B. Development of soft lower extremity exoskeleton and its key technologies: A survey[J]. Robot, 2020, 42(3): 365-384.
|
[4] |
王群, 黄真.脑卒中偏瘫患者上肢功能的生物力学机制研究[J].中华物理医学与康复杂志, 2016, 38(12):951-954.
Wang Q, Huang Z. Study on the biomechanical mechanism of upper limb function in stroke patients with hemiplegia[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2016, 38(12): 951-954.
|
[5] |
Kwakkel G, Kollen B J, Wagenaar R C.Therapy impact on functional recovery in stroke rehabilitation[J]. Physiotherapy, 1999, 85(7): 377-391.
|
[6] |
Cao W J, Chen C J, Hu H Y, et al.Effect of hip assistance modes on metabolic cost of walking with a soft exoskeleton[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 426-436.
|
[7] |
孙定阳, 沈浩, 郭朝, 等.绳驱动柔性上肢外骨骼机器人设计与控制[J].机器人, 2019, 41(6):834-841.
Sun D Y, Shen H, Guo C, et al. Design and control of the cable driven compliant upper limb exoskeleton robot[J]. Robot, 2019, 41(6): 834-841.
|
[8] |
Veale A J, Xie S Q.Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies[J]. Medical Engineering & Physics, 2016, 38(4): 317-325.
|
[9] |
Xiloyannis M, Chiaradia D, Frisoli A, et al.Physiological and kinematic effects of a soft exosuit on arm movements[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16. DOI: 10. 1186/s12984-019-0495-y.
|
[10] |
Xiloyannis M, Cappello L, Binh K D, et al.Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living[J]. Journal of Rehabi-litation and Assistive Technologies Engineering, 2017, 4. DOI: 10.1177/2055668316680315.
|
[11] |
Chiaradia D, Tiseni L, Xiloyannis M, et al.An assistive soft wrist exosuit for flexion movements with an ergonomic reinforced glove[J]. Frontiers in Robotics and AI, 2021. DOI: 10. 3389/frobt.2020.595862.
|
[12] |
Polygerinos P, Wang Z, Galloway K C, et al.Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135-143.
|
[13] |
Andrikopoulos G, Nikolakopoulos G, Manesis S.Motion control of a novel robotic wrist exoskeleton via pneumatic muscle actuators[C]//IEEE 20th Conference on Emerging Technologies & Factory Automation. Piscataway, USA: IEEE, 2015. DOI: 10. 1109/ETFA.2015.7301464.
|
[14] |
姚建涛, 李海利, 曹开彬, 等.柔性可穿戴腕部动力手套的设计与分析[J].机械工程学报, 2018, 54(19):1-9.
Yao J T, Li H L, Cao K B, et al. Design and analysis of flexible wearable wrist power glove[J]. Journal of Mechanical Engineering, 2018, 54(19): 1-9.
|
[15] |
Higuma T, Kiguchi K, Arata J.Low-profile two-degree-of-freedom wrist exoskeleton device using multiple spring blades [J]. IEEE Robotics and Automation Letters, 2018, 3(1): 305-311.
|
[16] |
Park S J, Park C H.Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle[J]. Scientific Reports, 2019, 9. DOI: 10.1038/s41598-019-45722-x.
|
[17] |
Park S J, Kim U, Park C H.A novel fabric muscle based on shape memory alloy springs[J]. Soft Robotics, 2020, 7(3): 321-331.
|
[18] |
Jeong J, Yasir I B, Han J, et al.Design of shape memory alloy-based soft wearable robot for assisting wrist motion[J]. Applied Sciences, 2019, 9(19). DOI: 10.3390/app9194025.
|
[19] |
张忠强, 邹娇, 丁建宁, 等.软体机器人驱动研究现状[J].机器人, 2018, 40(5):648-659.
Zhang Z Q, Zou J, Ding J N, et al. Research status of the soft robot driving[J]. Robot, 2018, 40(5): 648-659.
|
[20] |
杨浩.仿象鼻机械臂的运动学分析及实验[J].机器人, 2017, 39(5):585-594.
Tian J W, Wang T M, Shi Z Y, et al. Kinematics analysis and experiment of an elephant-trunk-like robot arm[J]. Robot, 2017, 39(5): 585-594.
|
[22] |
Howell L L.柔顺机构学[M].北京:高等教育出版社, 2007.
Howell L L. Compliance mechanism[M]. Beijing: Higher Education Press, 2007.
|
[23] |
Neumann D A.基于Matlab的人体上肢运动分析及仿真[D].天津:天津科技大学, 2003.
Zhang A L. Analysis and simulation of human upper limb movement based on Matlab[D]. Tianjin: Tianjin University of Science and Technology, 2003.
|
[25] |
李瑞.形状记忆合金柔性驱动器的特性分析与控制研究[D].广州:华南理工大学, 2019.
Li R. Characteristic analysis and control research of shape memory alloy flexible actuator[D]. Guangzhou: South China University of Technology, 2019.
|
[26] |
李晓光, 张弼, 赵新刚, 等.形状记忆合金驱动器的自适应滑模反步控制[J].控制理论与应用, 2020, 37(1):137-146.
Li X G, Zhang B, Zhao X G, et al. Adaptive backstepping sliding mode controller for a shape memory alloy actuator[J]. Control Theory & Applications, 2020, 37(1): 137-146.
|