Citation: | WANG Chao, WU Yinan, FANG Yongchun, FAN Zhi, LIU Cunhuan. A Visualization System for AFM-Based Nano-Manipulation on Soft Samples[J]. ROBOT, 2021, 43(3): 331-339. DOI: 10.13973/j.cnki.robot.200205 |
[1] |
Binnig G, Quate C F, Gerber C. Atomic force microscope[M]//Perspectives in Condensed Matter Physics, Vol.6. Berlin, Germany: Springer, 1986: 55-58.
|
[2] |
Krieg M, Flaschner G, Alsteens D, et al. Atomic force microscopy-based mechanobiology[J]. Nature Reviews: Physics, 2019, 1: 41-57.
|
[3] |
Li M, Xi N, Wang Y C, et al. Advances in atomic force microscopy for single-cell analysis[J]. Nano Research, 2019, 12: 703-718.
|
[4] |
Moreno-Moreno M, Ares P, Moreno C, et al. AFM manipulation of gold nanowires to build electrical circuits[J]. Nano Letters, 2019, 19(8): 5459-5468.
|
[5] |
李龙海,刘连庆,董再励. 面向可控自组装的DNA纳米管可编程AFM操作[J].微纳电子技术, 2015, 52(4): 240-245.
Li L H, Liu L Q, Dong Z L. Programmable AFM manipulation for DNA nanotubes with the controlled self-assembly[J]. Micronanoelectronic Technology, 2015, 52(4): 240-245.
|
[6] |
Helle S C J, Feng Q, Aebersold M J, et al. Mechanical force induces mitochondrial fission[J]. eLife, 2017. DOI: 10. 7554/eLife.30292.001.
|
[7] |
Guillaume-Gentil O, Grindberg R V, Kooger R, et al. Tunable single-cell extraction for molecular analyses[J]. Cell, 2016, 166(2): 506-516.
|
[8] |
Xie H, Rgnier S. High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy[J]. IEEE Transactions on Nanotechnology, 2012, 11(1): 21-33.
|
[9] |
Shen Y J, Nakajima M, Zhang Z H, et al. Dynamic force characterization microscopy based on integrated nanorobotic AFM and SEM system for detachment process study[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 3009-3017.
|
[10] |
Shi Q, Yang Z, Guo Y N, et al. A vision-based automated manipulation system for the pick-up of carbon nanotubes[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 845- 854.
|
[11] |
Li G Y, Xi N, Chen H P, et al. “Videolized” atomic force microscopy for interactive nanomanipulation and nanoassembly[J]. IEEE Transactions on Nanotechnology, 2005, 4(5): 605- 615.
|
[12] |
Korayem M H, Esmaeilzadehha S. Virtual reality interface for nano-manipulation based on enhanced images[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63: 1153-1166.
|
[13] |
Korayem M H, Hoshiar A K, Ghofrani M. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment[J]. Journal of Molecular Graphics and Modelling, 2017, 75: 266-276.
|
[14] |
Onal C D, Sitti M. Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope[J]. IEEE Transactions on Nanotechnology, 2010, 9(1): 46-54.
|
[15] |
Li G Y, Xi N, Yu M M, et al. Development of augmented reality system for AFM-based nanomanipulation[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(2): 358-365.
|
[16] |
Vogl W, Ma B K L, Sitti M. Augmented reality user interface for an atomic force microscope-based nanorobotic system[J]. IEEE Transactions on Nanotechnology, 2006, 5(4): 397-406.
|
[17] |
Wu Y N, Fang Y C, Wang C, et al. An optimized scanning based AFM fast imaging method[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 535-546.
|
[18] |
Sunday D. Fast polygon area and Newell normal computation[J]. Journal of Graphics Tools, 2002, 7(2): 9-13.
|
[19] |
Sneddon I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965, 3(1): 47-57.
|