Citation: | HUANG Yan, LI Yan, YU Jiancheng, LI Shuo, FENG Xisheng. State-of-the-Art and Development Trends of AUV Intelligence[J]. ROBOT, 2020, 42(2): 215-231. DOI: 10.13973/j.cnki.robot.190392 |
[1] |
赵欣怡,宗群,张睿隆,等.类脑智能技术在无人系统上的应用[J].控制理论与应用,2019,36(1):1-12.
Zhao X Y, Zong Q, Zhang R L, et al. Application of brain-inspired intelligence technology in unmanned vehicles[J]. Control Theory&Applications, 2019, 36(1):1-12.
|
[2] |
Sharp K M, White R H. More tools in the toolbox:The naval oceanographic office's remote environmental monitoring units (REMUS)6000 AUV[C]//OCEANS 2008. Piscataway, USA:IEEE, 2008:2135-2138.
|
[3] |
Adams A A, Charles P T, Veitch S P, et al. REMUS100 AUV with an integrated microfluidic system for explosives detection[J]. Analytical and Bioanalytical Chemistry, 2013, 405(15):5171-5178.
|
[4] |
Bondaryk J E. Bluefin autonomous underwater vehicles:Programs, systems, and acoustic issues[J]. The Journal of the Acoustical Society of America, 2004, 115(5). DOI:10.1121/1. 4784796.
|
[5] |
Marthiniussen R, Vestgard K, Klepaker R A, et al. HUGIN-AUV concept and operational experiences to date[C]//Oceans'04 MTS/IEEE Techno-Ocean'04 Conference. Piscataway,USA:IEEE, 2004:846-850.
|
[6] |
McPhail S, Furlong M, Huvenne V, et al. Autosub6000:Its first deepwater trials and science missions[J]. Underwater Technology, 2009, 28(3):91-98.
|
[7] |
Ura T, Obara T, Nagahashi K, et al. Introduction to an AUV "r2D4" and its Kuroshima Knoll survey mission[C]//Oceans'04 MTS/IEEE Techno-Ocean'04 Conference. Piscataway,USA:IEEE, 2004:840-845.
|
[8] |
李硕,唐元贵,黄琰,等.深海技术装备研制现状与展望[J].中国科学院院刊,2016,31(12):1316-1325.
Li S, Tang Y G, Huang Y, et al. Review and prospect for Chinese deep-sea technology and equipment[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(12):1316-1325.
|
[9] |
唐振韬,邵坤,赵冬斌,等.深度强化学习进展:从AlphaGo到AlphaGo Zero[J].控制理论与应用,2017,34(12):1529-1546.
Tang Z T, Shao K, Zhao D B, et al. Recent progress of deep reinforcement learning:From AlphaGo to AlphaGo Zero[J]. Control Theory&Applications, 2017, 34(12):1529-1546.
|
[10] |
Yan C G, Xie H T, Yang D B, et al. Supervised hash coding with deep neural network for environment perception of intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1):284-295.
|
[11] |
中国人工智能2.0发展战略研究项目组.中国人工智能2.0发展战略研究[M].杭州:浙江大学出版,2018. Strategic research group of artificial intelligence 2.0in China. Strategic research on artificial intelligence 2.0[M]. Hangzhou:Zhejiang University Press, 2018.
|
[12] |
Lu H M, Li Y J, Zhang Y D, et al. Underwater optical image processing:A comprehensive review[J]. Mobile Networks and Applications, 2017, 22(6):1204-1211.
|
[13] |
Beijbom O, Edmunds P J, Kline D I, et al. Automated annotation of coral reef survey images[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA:IEEE, 2012:1170-1177.
|
[14] |
Petit F, Capelle-Laize A S, Carre P. Underwater image enhancement by attenuation inversion with quaternions[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, USA:IEEE, 2009:1177-1180.
|
[15] |
Jia D X, Ge Y R. Underwater image de-noising algorithm based on nonsubsampled contourlet transform and total variation[C]//International Conference on Computer Science and Information Processing. Piscataway, USA:IEEE, 2012:76-80.
|
[16] |
Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4):1756-1769.
|
[17] |
石丹,李庆武,范新南,等.基于Contourlet变换和多尺度Rentinex的水下图像增强算法[J].激光与光电子学进展,2010,47(4):No.041001. Shi D, Li Q W, Fan X N, et al. Underwater image enhancement algorithm based on Contourlet transform and multi-scale Retinex[J]. Laser&Optoelectronics Progress, 2010, 47(4):No.041001.
|
[18] |
Li C Y, Guo J C, Pang Y W, et al. Single underwater image restoration by blue-green channels dehazing and red channel correction[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, USA:IEEE, 2016:1731-1735.
|
[19] |
Wen H C, Tian Y H, Huang T J, et al. Single underwater image enhancement with a new optical model[C]//IEEE International Symposium on Circuits and Systems. Piscataway, USA:IEEE, 2013:753-756.
|
[20] |
Han M, Lyu Z, Qiu T, et al. A review on intelligence dehazing and color restoration for underwater images[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018. DOI: 10.1109/TSMC.2017.2788902.
|
[21] |
Moniruzzaman M, Islam S M S, Bennamoun M, et al. Deep learning on underwater marine object detection:A survey[C]//18th International Conference on Advanced Concepts for Intelligent Vision Systems. Cham, Switzerland:Springer, 2017:150-160.
|
[22] |
Ravanbakhsh M, Shortis M R, Shafait F, et al. Automated fish detection in underwater images using shape-based level sets[J]. Photogrammetric Record, 2015, 30(149):46-62.
|
[23] |
Ravanbakhsh M, Shortis M R, Shafait F, et al. An application of shape-based level sets to fish detection in underwater images[C]//2014 Geospatial Science Research 3 Symposium. Aachen, Germany:CEUR-WS, 2014.
|
[24] |
Chuang M C, Hwang J N, Williams K, et al. Tracking live fish from low-contrast and low-frame-rate stereo videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 25(1):167-179.
|
[25] |
Li X, Shang M, Qin H W, et al. Fast accurate fish detection and recognition of underwater images with fast R-CNN[C]//OCEANS 2015. Piscataway, USA:IEEE, 2015.
|
[26] |
Qin H W, Li X, Yang Z X, et al. When underwater imagery analysis meets deep learning:A solution at the age of big visual data[C]//OCEANS 2015. Piscataway, USA:IEEE, 2015.
|
[27] |
Qin H W, Li X, Liang J, et al. DeepFish:Accurate underwater live fish recognition with a deep architecture[J]. Neurocomputing, 2016, 187(S1):49-58.
|
[28] |
Villon S, Chaumont M, Subsol G, et al. Coral reef fish detection and recognition in underwater videos by supervised machine learning:Comparison between deep learning and HOG+SVM methods[C]//17th International Conference on Advanced Concepts for Intelligent Vision Systems. Cham, Switzerland:Springer, 2016:160-171.
|
[29] |
Ouyang P, Hu H, Shi Z Z. Plankton classification with deep convolutional neural networks[C]//IEEE Information Technology, Networking, Electronic and Automation Control Conference. Piscataway, USA:IEEE, 2016:132-136.
|
[30] |
Lee H, Park M, Kim J. Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning[C]//IEEE International Conference on Image Processing. Piscataway, USA:IEEE, 2016:3713-3717.
|
[31] |
Dai J L, Wang R C, Zheng H Y, et al. ZooplanktoNet:Deep convolutional network for zooplankton classification[C]//OCEANS 2016. Piscataway, USA:IEEE, 2016.
|
[32] |
Mahmood A, Bennamoun M, An S, et al. Coral classification with hybrid feature representations[C]//IEEE International Conference on Image Processing. Piscataway, USA:IEEE, 2016:519-523.
|
[33] |
Elawady M. Sparse coral classification using deep convolutional neural networks[DB/OL].(2015-11-29)[2019-07-20]. https://arxiv.org/abs/1511.09067.
|
[34] |
Oregon State University. National Data Science Bowl[DB/OL].[2019-07-20]. https://www.kaggle.com/c/datasciencebowl.
|
[35] |
Marcos M S A C, Soriano M N, Saloma C A. Classification of coral reef images from underwater video using neural networks[J]. Optics Express, 2005, 13(22):8766-8771.
|
[36] |
Dura E, Bell J, Lane D. Superellipse fitting for the recovery and classification of mine-like shapes in sidescan sonar images[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4):434-444.
|
[37] |
Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1):90-105.
|
[38] |
Fandos R, Zoubir A M. Optimal feature set for automatic detection and classification of underwater objects in SAS images[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3):454-468.
|
[39] |
Dura E. Image processing techniques for the detection and classification of man made objects in side-scan sonar images[M]//Sonar Systems. London, UK:IntechOpen, 2011:121-140.
|
[40] |
Ratto C R. Nonparametric Bayesian context learning for buried threat detection[R]. Durham, USA:Duke University, 2012.
|
[41] |
Ratto C R, Morton Jr K D, Collins L M, et al. Bayesian context-dependent learning for anomaly classification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4):1969-1981.
|
[42] |
Williams D P, Fakiris E. Exploiting environmental information for improved underwater target classification in sonar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6284-6297.
|
[43] |
Williams D P. Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks[C]//23rd International Conference on Pattern Recognition. Piscataway, USA:IEEE, 2016:2497-2502.
|
[44] |
Zhu P, Isaacs J, Fu B, et al. Deep learning feature extraction for target recognition and classification in underwater sonar images[C]//56th IEEE Annual Conference on Decision and Control. Piscataway, USA:IEEE, 2017:2724-2731.
|
[45] |
Shen S, Yang H H, Li J H, et al. Auditory inspired convolutional neural networks for ship type classification with raw hydrophone data[J]. Entropy, 2018, 20(12). DOI: 10.3390/e20120990.
|
[46] |
Zeng Z, Sammut K, Lian L, et al. A comparison of optimization techniques for AUV path planning in environments with ocean currents[J]. Robotics and Autonomous Systems, 2016, 82:61-72.
|
[47] |
Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959(1):269-271.
|
[48] |
Carroll K P, McClaran S R, Nelson E L, et al. AUV path planning:An A*approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones[C]//1992 Symposium on Autonomous Underwater Vehicle Technology. Piscataway, USA:IEEE, 1992:79-84.
|
[49] |
Ferguson D, Stentz A. Using interpolation to improve path planning:The field D*algorithm[J]. Journal of Field Robotics, 2006, 23(2):79-101.
|
[50] |
Ferguson D, Stentz A. Anytime RRTs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:5369-5375.
|
[51] |
Lolla T, Ueckermann M P, Yiğit K, et al. Path planning in time dependent flow fields using level set methods[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:166-173.
|
[52] |
Warren C W. A technique for autonomous underwater vehicle route planning[J]. IEEE Journal of Oceanic Engineering, 1990, 15(3):199-204.
|
[53] |
Kruger D, Stolkin R, Blum A, et al. Optimal AUV path planning for extended missions in complex, fast-flowing estuarine environments[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:4265-4270.
|
[54] |
Tan C S, Sutton R, Chudley J. Quasi-random, manoeuvre-based motion planning algorithm for autonomous underwater vehicles[J]. IFAC Proceedings Volumes, 2005, 16:103-108.
|
[55] |
Rao D, Williams S B. Large-scale path planning for underwater gliders in ocean currents[C]//Australasian Conference on Robotics and Automation. Australia:Australian Robotics and Automation Association Inc., 2009.
|
[56] |
Alvarez A, Caiti A, Onken R. Evolutionary path planning for autonomous underwater vehicles in a variable ocean[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2):418-429.
|
[57] |
Saska M, Macas M, Preucil L, et al. Robot path planning using particle swarm optimization of Ferguson splines[C]//11th IEEE Conference on Emerging Technologies and Factory Automation. Piscataway, USA:IEEE, 2006:833-839.
|
[58] |
Witt J, Dunbabin M. Go with the flow:Optimal AUV path planning in coastal environments[C]//Australian Conference on Robotics and Automation. Australia:Australian Robotics and Automation Association Inc., 2008.
|
[59] |
Fu Y G, Ding M Y, Zhou C P. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2011, 42(2):511-526.
|
[60] |
Sutton R S, Barto A G. Reinforcement learning:An introduction[M]. Cambridge, USA:MIT Press, 1998.
|
[61] |
Cui R X, Yang C G, Li Y, et al. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(6):1019-1029.
|
[62] |
Yu R S, Shi Z Y, Huang C X, et al. Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle[C]//36th Chinese Control Conference. Piscataway, USA:IEEE, 2017:4958-4965.
|
[63] |
Yoo B, Kim J. Path optimization for marine vehicles in ocean currents using reinforcement learning[J]. Journal of Marine Science and Technology, 2016, 21(2):334-343.
|
[64] |
徐玉如,庞永杰,甘永,等.智能水下机器人技术展望[D].智能系统学报,2006,1(1):9-16.
Xu Y R, Pang Y J, Gan Y, et al. AUV——State-of-the-art and prospect[J]. CAAL Transactions on Intelligent Systems, 2006, 1(1):9-16.
|
[65] |
Sarhadi P, Noei A R, Khosravi A. Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle[J]. Robotics and Autonomous Systems, 2016, 83:87-93.
|
[66] |
van de Ven P W J, Flanagan C, Toal D. Neural network control of underwater vehicles[J]. Engineering Applications of Artificial Intelligence, 2005, 18(5):533-547.
|
[67] |
Zhu D Q, Sun B. The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10):2260-2269.
|
[68] |
Smith S M, Rae G J S, Anderson D T, et al. Fuzzy-logic control of an autonomous underwater vehicle[J]. Control Engineering Practice, 1994, 2(2):321-331.
|
[69] |
DeBitetto P A. Fuzzy-logic for depth control of unmanned undersea vehicles[J]. IEEE Journal of Oceanic Engineering, 1995, 20(3):242-248.
|
[70] |
Guo J, Chiu F C, Huang C C. Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle[J]. Ocean Engineering, 2003, 30(16):2137-2155.
|
[71] |
Smith S M, Rae G J S, Anderson D T. Applications of fuzzy-logic to the control of an autonomous underwater vehicle[C]//2nd IEEE International Conference on Fuzzy Systems. Piscataway, USA:IEEE, 1993:1099-1106.
|
[72] |
Zadeh L A. Fuzzy-logic, neural networks, and soft computing[J]. Communications of the ACM, 1994, 37(3):77-84.
|
[73] |
Raeisy B, Safavi A A, Khayatian A R. Optimized fuzzy control design of an autonomous underwater vehicle[J]. Iranian Journal of Fuzzy Systems, 2012, 9(2):25-41.
|
[74] |
Khodayari M H, Balochian S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller[J]. Journal of Marine Science and Technology, 2015, 20(3):559-578.
|
[75] |
Londhe P S, Mohan S, Patre B M, et al. Robust task-space control of an autonomous underwater vehicle-manipulator system by PID-like fuzzy control scheme with disturbance estimator[J]. Ocean Engineering, 2017, 139:1-13.
|
[76] |
Xiang X B, Yu C Y, Lapierre L, et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles[J]. International Journal of Fuzzy Systems, 2018, 20(2):572-586.
|
[77] |
陈卫东,席裕庚,顾冬雷.自主机器人的强化学习研究进展[J].机器人,2001,23(4):379-384.
Chen W D, Xi Y G, Gu D L. A survey of reinforcement learning in autonomous mobile robots[J]. Robot, 2001, 23(4):379-384.
|
[78] |
Carreras M, Yuh J, Batlle J, et al. A behavior-based scheme using reinforcement learning for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2005, 30(2):416-427.
|
[79] |
El-Fakdi A, Carreras M, Palomeras N, et al. Autonomous underwater vehicle control using reinforcement learning policy search methods[C]//OCEANS 2005. Piscataway, USA:IEEE, 2005:793-798.
|
[80] |
El-Fakdi A. Gradient-based reinforcement learning techniques for underwater robotics behavior learning[D]. Girona, Spain:University of Girona, 2011.
|
[81] |
El-Fakdi A, Carreras M. Two-step gradient-based reinforcement learning for underwater robotics behavior learning[J]. Robotics and Autonomous Systems, 2013, 61(3):271-282.
|
[82] |
Riedmiller M. Neural fitted Q iteration——First experiences with a data efficient neural reinforcement learning method[C]//16th European Conference on Machine Learning. Berlin, Germany:Springer, 2005:317-328.
|
[83] |
Degris T, Pilarski P M, Sutton R S. Model-free reinforcement learning with continuous action in practice[C]//American Control Conference. Piscataway, USA:IEEE, 2012:2177-2182.
|
[84] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
|
[85] |
Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[DB/OL].(2019-07-05)[2019-07-20]. https://arxiv.org/abs/1509.02971.
|
[86] |
Wu H, Song S J, You K Y, et al. Depth control of model-free AUVs via reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(12):2499-2510.
|
[87] |
Niu L Y, Song S J, You K Y. A plume-tracing strategy via continuous state-action reinforcement learning[C]//Chinese Automation Congress. Piscataway, USA:IEEE, 2017:759-764.
|
[88] |
Carlucho I, de Paula M, Wang S, et al. Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning[J]. Robotics and Autonomous Systems, 2018, 107:71-86.
|
[89] |
张铭钧,王玉甲,朱大奇,等.水下机器人故障诊断理论与技术[M].哈尔滨:哈尔滨工程大学出版社,2016. Zhang M J, Wang Y J, Zhu D Q, et al. Fault diagnosis theory and technique for underwater vehicle[M]. Harbin:Harbin University of Technology Press, 2016.
|
[90] |
Narasimhan S, Dearden R, Benazera E. Combining particle filters and consistency-based approaches for monitoring and diagnosis of stochastic hybrid systems[R/OL].(2004-01-01)[2019-07-20]. https://ntrs.nasa.gov/search.jsp?R=20040087092.
|
[91] |
Steinberg D M, Friedman A, Pizarro O, et al. A Bayesian nonparametric approach to clustering data from underwater robotic surveys[C]//15th International Symposium on Robotics Research. 2011.
|
[92] |
Williams B C, Nayak P P. A model-based approach to reactive self-configuring systems[C]//13th National Conference on Artificial Intelligence. Palo Alto, USA:AAAI, 1996:971-978.
|
[93] |
Antonelli G, Caccavale F, Sansone C, et al. Fault diagnosis for AUVs using support vector machines[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2004:4486-4491.
|
[94] |
Madsen A L, Kjærulff U B, Kalwa J, et al. Applicationsof probabilistic graphical models to diagnosis and control of autonomous vehicles[C]//Second Bayesian Modeling Applications Workshop. 2004. http://people.cs.aau.dk/~uk/papers/adv2_uaiws_04.pdf.
|
[95] |
Raanan B Y, Bellingham J, Zhang Y, et al. Detection of unanticipated faults for autonomous underwater vehicles using online topic models[J]. Journal of Field Robotics, 2018, 35(5):705-716.
|
[96] |
German C R, Yoerger D R, Jakuba M, et al. Hydrothermal exploration by AUV:Progress to-date with ABE in the Pacific, Atlantic&Indian Oceans[C]//IEEE/OES Autonomous Underwater Vehicles. Piscataway, USA:IEEE, 2008:78-82.
|
[97] |
Mylne K R. Concentration fluctuation measurements in a plume dispersing in a stable surface-layer[J]. Boundary-Layer Meteorology, 1992, 60(1-2):15-48.
|
[98] |
Jones C D. On the structure of instantaneous plumes in the atmosphere[J]. Journal of Hazardous Materials, 1983, 7(2):87-112.
|
[99] |
Farrell J A, Li W, Pang S, et al. Chemical plume tracing experimental results with a REMUS AUV[C]//OCEANS 2003. Piscataway, USA:IEEE, 2003:962-968.
|
[100] |
Tian Y, Kang X D, Li Y Y, et al. Identifying rhodamine dye plume sources in near-shore oceanic environments by integration of chemical and visual sensors[J]. Sensors, 2013, 13(3):3776-3798.
|
[101] |
Li W, Farrell J A, Pang S, et al. Moth-inspired chemical plume tracing on an autonomous underwater vehicle[J]. IEEE Transactions on Robotics, 2006, 22(2):292-307.
|
[102] |
Hu H K, Song S J, Chen C L P. Plume tracing via model-free reinforcement learning method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(8):2515-2527.
|
[103] |
Marani G, Choi S K, Yuh J. Underwater autonomous manipulation for intervention missions AUVs[J]. Ocean Engineering, 2009, 36(1):15-23.
|
[104] |
Ribas D, Palomeras N, Ridao P, et al. Girona 500 AUV:From survey to intervention[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(1):46-53.
|
[105] |
Maurelli F, Lane D, Kormushev P, et al. The PANDORA project:A success story in AUV autonomy[C]//OCEANS 2016. Piscataway, USA:IEEE, 2016. DOI:10.1109/OCEANSAP. 2016.7485618.
|
[106] |
张广玉,何玉庆,代波,等.面向抓取作业的飞行机械臂系统及其控制[J].机器人,2019,41(1):19-29.
Zhang G Y, He Y Q, Dai B, et al. Towards grasping task:System and control of an aerial manipulator[J]. Robot, 2019, 41(1):19-29.
|
[107] |
Jin L, Li S, Yu J G, et al. Robot manipulator control using neural networks:A survey[J]. Neurocomputing, 2018, 285:23-34.
|
[108] |
Thuruthel T G, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators:A survey[J]. Soft Robotics, 2018, 5(2):149-163.
|
[109] |
Inga J, Köpf F, Flad M, et al. Individual human behavioridentification using an inverse reinforcement learning method[C]//IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, USA:IEEE, 2017:99-104.
|
[110] |
Hobson B W, Bellingham J G, Kieft B, et al. Tethys-class long range AUVs——Extending the endurance of propeller-driven cruising AUVs from days to weeks[C]//IEEE/OES Autonomous Underwater Vehicles Conference. Piscataway, USA:IEEE, 2012. DOI: 10.1109/AUV.2012.6380735.
|
[111] |
张钹.人工智能进入后深度学习时代[J].智能科学与技术学报,2019,1(1):4-6.
Zhang B. Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technologies, 2019, 1(1):4-6.
|