HUANG Yan, LI Yan, YU Jiancheng, LI Shuo, FENG Xisheng. State-of-the-Art and Development Trends of AUV Intelligence[J]. ROBOT, 2020, 42(2): 215-231. DOI: 10.13973/j.cnki.robot.190392
Citation: HUANG Yan, LI Yan, YU Jiancheng, LI Shuo, FENG Xisheng. State-of-the-Art and Development Trends of AUV Intelligence[J]. ROBOT, 2020, 42(2): 215-231. DOI: 10.13973/j.cnki.robot.190392

State-of-the-Art and Development Trends of AUV Intelligence

More Information
  • Received Date: July 20, 2019
  • Revised Date: November 20, 2019
  • Available Online: October 26, 2022
  • Published Date: March 14, 2020
  • The state-of-the-art of the AUV (autonomous underwater vehicle) incorporating the artificial intelligence methods at home and abroad are summarized. A number of core technologies are analyzed, including detection and perception, control decision in navigation, path planning and fault diagnosis, and the applications of the artificial intelligence methods in AUV typical application scenarios are investigated. Finally, the intelligence development trends of AUV are pointed out.
  • [1]
    赵欣怡,宗群,张睿隆,等.类脑智能技术在无人系统上的应用[J].控制理论与应用,2019,36(1):1-12.

    Zhao X Y, Zong Q, Zhang R L, et al. Application of brain-inspired intelligence technology in unmanned vehicles[J]. Control Theory&Applications, 2019, 36(1):1-12.
    [2]
    Sharp K M, White R H. More tools in the toolbox:The naval oceanographic office's remote environmental monitoring units (REMUS)6000 AUV[C]//OCEANS 2008. Piscataway, USA:IEEE, 2008:2135-2138.
    [3]
    Adams A A, Charles P T, Veitch S P, et al. REMUS100 AUV with an integrated microfluidic system for explosives detection[J]. Analytical and Bioanalytical Chemistry, 2013, 405(15):5171-5178.
    [4]
    Bondaryk J E. Bluefin autonomous underwater vehicles:Programs, systems, and acoustic issues[J]. The Journal of the Acoustical Society of America, 2004, 115(5). DOI:10.1121/1. 4784796.
    [5]
    Marthiniussen R, Vestgard K, Klepaker R A, et al. HUGIN-AUV concept and operational experiences to date[C]//Oceans'04 MTS/IEEE Techno-Ocean'04 Conference. Piscataway,USA:IEEE, 2004:846-850.
    [6]
    McPhail S, Furlong M, Huvenne V, et al. Autosub6000:Its first deepwater trials and science missions[J]. Underwater Technology, 2009, 28(3):91-98.
    [7]
    Ura T, Obara T, Nagahashi K, et al. Introduction to an AUV "r2D4" and its Kuroshima Knoll survey mission[C]//Oceans'04 MTS/IEEE Techno-Ocean'04 Conference. Piscataway,USA:IEEE, 2004:840-845.
    [8]
    李硕,唐元贵,黄琰,等.深海技术装备研制现状与展望[J].中国科学院院刊,2016,31(12):1316-1325.

    Li S, Tang Y G, Huang Y, et al. Review and prospect for Chinese deep-sea technology and equipment[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(12):1316-1325.
    [9]
    唐振韬,邵坤,赵冬斌,等.深度强化学习进展:从AlphaGo到AlphaGo Zero[J].控制理论与应用,2017,34(12):1529-1546.

    Tang Z T, Shao K, Zhao D B, et al. Recent progress of deep reinforcement learning:From AlphaGo to AlphaGo Zero[J]. Control Theory&Applications, 2017, 34(12):1529-1546.
    [10]
    Yan C G, Xie H T, Yang D B, et al. Supervised hash coding with deep neural network for environment perception of intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1):284-295.
    [11]
    中国人工智能2.0发展战略研究项目组.中国人工智能2.0发展战略研究[M].杭州:浙江大学出版,2018. Strategic research group of artificial intelligence 2.0in China. Strategic research on artificial intelligence 2.0[M]. Hangzhou:Zhejiang University Press, 2018.
    [12]
    Lu H M, Li Y J, Zhang Y D, et al. Underwater optical image processing:A comprehensive review[J]. Mobile Networks and Applications, 2017, 22(6):1204-1211.
    [13]
    Beijbom O, Edmunds P J, Kline D I, et al. Automated annotation of coral reef survey images[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA:IEEE, 2012:1170-1177.
    [14]
    Petit F, Capelle-Laize A S, Carre P. Underwater image enhancement by attenuation inversion with quaternions[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, USA:IEEE, 2009:1177-1180.
    [15]
    Jia D X, Ge Y R. Underwater image de-noising algorithm based on nonsubsampled contourlet transform and total variation[C]//International Conference on Computer Science and Information Processing. Piscataway, USA:IEEE, 2012:76-80.
    [16]
    Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4):1756-1769.
    [17]
    石丹,李庆武,范新南,等.基于Contourlet变换和多尺度Rentinex的水下图像增强算法[J].激光与光电子学进展,2010,47(4):No.041001. Shi D, Li Q W, Fan X N, et al. Underwater image enhancement algorithm based on Contourlet transform and multi-scale Retinex[J]. Laser&Optoelectronics Progress, 2010, 47(4):No.041001.
    [18]
    Li C Y, Guo J C, Pang Y W, et al. Single underwater image restoration by blue-green channels dehazing and red channel correction[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, USA:IEEE, 2016:1731-1735.
    [19]
    Wen H C, Tian Y H, Huang T J, et al. Single underwater image enhancement with a new optical model[C]//IEEE International Symposium on Circuits and Systems. Piscataway, USA:IEEE, 2013:753-756.
    [20]
    Han M, Lyu Z, Qiu T, et al. A review on intelligence dehazing and color restoration for underwater images[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018. DOI: 10.1109/TSMC.2017.2788902.
    [21]
    Moniruzzaman M, Islam S M S, Bennamoun M, et al. Deep learning on underwater marine object detection:A survey[C]//18th International Conference on Advanced Concepts for Intelligent Vision Systems. Cham, Switzerland:Springer, 2017:150-160.
    [22]
    Ravanbakhsh M, Shortis M R, Shafait F, et al. Automated fish detection in underwater images using shape-based level sets[J]. Photogrammetric Record, 2015, 30(149):46-62.
    [23]
    Ravanbakhsh M, Shortis M R, Shafait F, et al. An application of shape-based level sets to fish detection in underwater images[C]//2014 Geospatial Science Research 3 Symposium. Aachen, Germany:CEUR-WS, 2014.
    [24]
    Chuang M C, Hwang J N, Williams K, et al. Tracking live fish from low-contrast and low-frame-rate stereo videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 25(1):167-179.
    [25]
    Li X, Shang M, Qin H W, et al. Fast accurate fish detection and recognition of underwater images with fast R-CNN[C]//OCEANS 2015. Piscataway, USA:IEEE, 2015.
    [26]
    Qin H W, Li X, Yang Z X, et al. When underwater imagery analysis meets deep learning:A solution at the age of big visual data[C]//OCEANS 2015. Piscataway, USA:IEEE, 2015.
    [27]
    Qin H W, Li X, Liang J, et al. DeepFish:Accurate underwater live fish recognition with a deep architecture[J]. Neurocomputing, 2016, 187(S1):49-58.
    [28]
    Villon S, Chaumont M, Subsol G, et al. Coral reef fish detection and recognition in underwater videos by supervised machine learning:Comparison between deep learning and HOG+SVM methods[C]//17th International Conference on Advanced Concepts for Intelligent Vision Systems. Cham, Switzerland:Springer, 2016:160-171.
    [29]
    Ouyang P, Hu H, Shi Z Z. Plankton classification with deep convolutional neural networks[C]//IEEE Information Technology, Networking, Electronic and Automation Control Conference. Piscataway, USA:IEEE, 2016:132-136.
    [30]
    Lee H, Park M, Kim J. Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning[C]//IEEE International Conference on Image Processing. Piscataway, USA:IEEE, 2016:3713-3717.
    [31]
    Dai J L, Wang R C, Zheng H Y, et al. ZooplanktoNet:Deep convolutional network for zooplankton classification[C]//OCEANS 2016. Piscataway, USA:IEEE, 2016.
    [32]
    Mahmood A, Bennamoun M, An S, et al. Coral classification with hybrid feature representations[C]//IEEE International Conference on Image Processing. Piscataway, USA:IEEE, 2016:519-523.
    [33]
    Elawady M. Sparse coral classification using deep convolutional neural networks[DB/OL].(2015-11-29)[2019-07-20]. https://arxiv.org/abs/1511.09067.
    [34]
    Oregon State University. National Data Science Bowl[DB/OL].[2019-07-20]. https://www.kaggle.com/c/datasciencebowl.
    [35]
    Marcos M S A C, Soriano M N, Saloma C A. Classification of coral reef images from underwater video using neural networks[J]. Optics Express, 2005, 13(22):8766-8771.
    [36]
    Dura E, Bell J, Lane D. Superellipse fitting for the recovery and classification of mine-like shapes in sidescan sonar images[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4):434-444.
    [37]
    Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1):90-105.
    [38]
    Fandos R, Zoubir A M. Optimal feature set for automatic detection and classification of underwater objects in SAS images[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3):454-468.
    [39]
    Dura E. Image processing techniques for the detection and classification of man made objects in side-scan sonar images[M]//Sonar Systems. London, UK:IntechOpen, 2011:121-140.
    [40]
    Ratto C R. Nonparametric Bayesian context learning for buried threat detection[R]. Durham, USA:Duke University, 2012.
    [41]
    Ratto C R, Morton Jr K D, Collins L M, et al. Bayesian context-dependent learning for anomaly classification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4):1969-1981.
    [42]
    Williams D P, Fakiris E. Exploiting environmental information for improved underwater target classification in sonar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6284-6297.
    [43]
    Williams D P. Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks[C]//23rd International Conference on Pattern Recognition. Piscataway, USA:IEEE, 2016:2497-2502.
    [44]
    Zhu P, Isaacs J, Fu B, et al. Deep learning feature extraction for target recognition and classification in underwater sonar images[C]//56th IEEE Annual Conference on Decision and Control. Piscataway, USA:IEEE, 2017:2724-2731.
    [45]
    Shen S, Yang H H, Li J H, et al. Auditory inspired convolutional neural networks for ship type classification with raw hydrophone data[J]. Entropy, 2018, 20(12). DOI: 10.3390/e20120990.
    [46]
    Zeng Z, Sammut K, Lian L, et al. A comparison of optimization techniques for AUV path planning in environments with ocean currents[J]. Robotics and Autonomous Systems, 2016, 82:61-72.
    [47]
    Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959(1):269-271.
    [48]
    Carroll K P, McClaran S R, Nelson E L, et al. AUV path planning:An A*approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones[C]//1992 Symposium on Autonomous Underwater Vehicle Technology. Piscataway, USA:IEEE, 1992:79-84.
    [49]
    Ferguson D, Stentz A. Using interpolation to improve path planning:The field D*algorithm[J]. Journal of Field Robotics, 2006, 23(2):79-101.
    [50]
    Ferguson D, Stentz A. Anytime RRTs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:5369-5375.
    [51]
    Lolla T, Ueckermann M P, Yiğit K, et al. Path planning in time dependent flow fields using level set methods[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:166-173.
    [52]
    Warren C W. A technique for autonomous underwater vehicle route planning[J]. IEEE Journal of Oceanic Engineering, 1990, 15(3):199-204.
    [53]
    Kruger D, Stolkin R, Blum A, et al. Optimal AUV path planning for extended missions in complex, fast-flowing estuarine environments[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:4265-4270.
    [54]
    Tan C S, Sutton R, Chudley J. Quasi-random, manoeuvre-based motion planning algorithm for autonomous underwater vehicles[J]. IFAC Proceedings Volumes, 2005, 16:103-108.
    [55]
    Rao D, Williams S B. Large-scale path planning for underwater gliders in ocean currents[C]//Australasian Conference on Robotics and Automation. Australia:Australian Robotics and Automation Association Inc., 2009.
    [56]
    Alvarez A, Caiti A, Onken R. Evolutionary path planning for autonomous underwater vehicles in a variable ocean[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2):418-429.
    [57]
    Saska M, Macas M, Preucil L, et al. Robot path planning using particle swarm optimization of Ferguson splines[C]//11th IEEE Conference on Emerging Technologies and Factory Automation. Piscataway, USA:IEEE, 2006:833-839.
    [58]
    Witt J, Dunbabin M. Go with the flow:Optimal AUV path planning in coastal environments[C]//Australian Conference on Robotics and Automation. Australia:Australian Robotics and Automation Association Inc., 2008.
    [59]
    Fu Y G, Ding M Y, Zhou C P. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2011, 42(2):511-526.
    [60]
    Sutton R S, Barto A G. Reinforcement learning:An introduction[M]. Cambridge, USA:MIT Press, 1998.
    [61]
    Cui R X, Yang C G, Li Y, et al. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(6):1019-1029.
    [62]
    Yu R S, Shi Z Y, Huang C X, et al. Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle[C]//36th Chinese Control Conference. Piscataway, USA:IEEE, 2017:4958-4965.
    [63]
    Yoo B, Kim J. Path optimization for marine vehicles in ocean currents using reinforcement learning[J]. Journal of Marine Science and Technology, 2016, 21(2):334-343.
    [64]
    徐玉如,庞永杰,甘永,等.智能水下机器人技术展望[D].智能系统学报,2006,1(1):9-16.

    Xu Y R, Pang Y J, Gan Y, et al. AUV——State-of-the-art and prospect[J]. CAAL Transactions on Intelligent Systems, 2006, 1(1):9-16.
    [65]
    Sarhadi P, Noei A R, Khosravi A. Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle[J]. Robotics and Autonomous Systems, 2016, 83:87-93.
    [66]
    van de Ven P W J, Flanagan C, Toal D. Neural network control of underwater vehicles[J]. Engineering Applications of Artificial Intelligence, 2005, 18(5):533-547.
    [67]
    Zhu D Q, Sun B. The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles[J]. Engineering Applications of Artificial Intelligence, 2013, 26(10):2260-2269.
    [68]
    Smith S M, Rae G J S, Anderson D T, et al. Fuzzy-logic control of an autonomous underwater vehicle[J]. Control Engineering Practice, 1994, 2(2):321-331.
    [69]
    DeBitetto P A. Fuzzy-logic for depth control of unmanned undersea vehicles[J]. IEEE Journal of Oceanic Engineering, 1995, 20(3):242-248.
    [70]
    Guo J, Chiu F C, Huang C C. Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle[J]. Ocean Engineering, 2003, 30(16):2137-2155.
    [71]
    Smith S M, Rae G J S, Anderson D T. Applications of fuzzy-logic to the control of an autonomous underwater vehicle[C]//2nd IEEE International Conference on Fuzzy Systems. Piscataway, USA:IEEE, 1993:1099-1106.
    [72]
    Zadeh L A. Fuzzy-logic, neural networks, and soft computing[J]. Communications of the ACM, 1994, 37(3):77-84.
    [73]
    Raeisy B, Safavi A A, Khayatian A R. Optimized fuzzy control design of an autonomous underwater vehicle[J]. Iranian Journal of Fuzzy Systems, 2012, 9(2):25-41.
    [74]
    Khodayari M H, Balochian S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller[J]. Journal of Marine Science and Technology, 2015, 20(3):559-578.
    [75]
    Londhe P S, Mohan S, Patre B M, et al. Robust task-space control of an autonomous underwater vehicle-manipulator system by PID-like fuzzy control scheme with disturbance estimator[J]. Ocean Engineering, 2017, 139:1-13.
    [76]
    Xiang X B, Yu C Y, Lapierre L, et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles[J]. International Journal of Fuzzy Systems, 2018, 20(2):572-586.
    [77]
    陈卫东,席裕庚,顾冬雷.自主机器人的强化学习研究进展[J].机器人,2001,23(4):379-384.

    Chen W D, Xi Y G, Gu D L. A survey of reinforcement learning in autonomous mobile robots[J]. Robot, 2001, 23(4):379-384.
    [78]
    Carreras M, Yuh J, Batlle J, et al. A behavior-based scheme using reinforcement learning for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2005, 30(2):416-427.
    [79]
    El-Fakdi A, Carreras M, Palomeras N, et al. Autonomous underwater vehicle control using reinforcement learning policy search methods[C]//OCEANS 2005. Piscataway, USA:IEEE, 2005:793-798.
    [80]
    El-Fakdi A. Gradient-based reinforcement learning techniques for underwater robotics behavior learning[D]. Girona, Spain:University of Girona, 2011.
    [81]
    El-Fakdi A, Carreras M. Two-step gradient-based reinforcement learning for underwater robotics behavior learning[J]. Robotics and Autonomous Systems, 2013, 61(3):271-282.
    [82]
    Riedmiller M. Neural fitted Q iteration——First experiences with a data efficient neural reinforcement learning method[C]//16th European Conference on Machine Learning. Berlin, Germany:Springer, 2005:317-328.
    [83]
    Degris T, Pilarski P M, Sutton R S. Model-free reinforcement learning with continuous action in practice[C]//American Control Conference. Piscataway, USA:IEEE, 2012:2177-2182.
    [84]
    Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
    [85]
    Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[DB/OL].(2019-07-05)[2019-07-20]. https://arxiv.org/abs/1509.02971.
    [86]
    Wu H, Song S J, You K Y, et al. Depth control of model-free AUVs via reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(12):2499-2510.
    [87]
    Niu L Y, Song S J, You K Y. A plume-tracing strategy via continuous state-action reinforcement learning[C]//Chinese Automation Congress. Piscataway, USA:IEEE, 2017:759-764.
    [88]
    Carlucho I, de Paula M, Wang S, et al. Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning[J]. Robotics and Autonomous Systems, 2018, 107:71-86.
    [89]
    张铭钧,王玉甲,朱大奇,等.水下机器人故障诊断理论与技术[M].哈尔滨:哈尔滨工程大学出版社,2016. Zhang M J, Wang Y J, Zhu D Q, et al. Fault diagnosis theory and technique for underwater vehicle[M]. Harbin:Harbin University of Technology Press, 2016.
    [90]
    Narasimhan S, Dearden R, Benazera E. Combining particle filters and consistency-based approaches for monitoring and diagnosis of stochastic hybrid systems[R/OL].(2004-01-01)[2019-07-20]. https://ntrs.nasa.gov/search.jsp?R=20040087092.
    [91]
    Steinberg D M, Friedman A, Pizarro O, et al. A Bayesian nonparametric approach to clustering data from underwater robotic surveys[C]//15th International Symposium on Robotics Research. 2011.
    [92]
    Williams B C, Nayak P P. A model-based approach to reactive self-configuring systems[C]//13th National Conference on Artificial Intelligence. Palo Alto, USA:AAAI, 1996:971-978.
    [93]
    Antonelli G, Caccavale F, Sansone C, et al. Fault diagnosis for AUVs using support vector machines[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2004:4486-4491.
    [94]
    Madsen A L, Kjærulff U B, Kalwa J, et al. Applicationsof probabilistic graphical models to diagnosis and control of autonomous vehicles[C]//Second Bayesian Modeling Applications Workshop. 2004. http://people.cs.aau.dk/~uk/papers/adv2_uaiws_04.pdf.
    [95]
    Raanan B Y, Bellingham J, Zhang Y, et al. Detection of unanticipated faults for autonomous underwater vehicles using online topic models[J]. Journal of Field Robotics, 2018, 35(5):705-716.
    [96]
    German C R, Yoerger D R, Jakuba M, et al. Hydrothermal exploration by AUV:Progress to-date with ABE in the Pacific, Atlantic&Indian Oceans[C]//IEEE/OES Autonomous Underwater Vehicles. Piscataway, USA:IEEE, 2008:78-82.
    [97]
    Mylne K R. Concentration fluctuation measurements in a plume dispersing in a stable surface-layer[J]. Boundary-Layer Meteorology, 1992, 60(1-2):15-48.
    [98]
    Jones C D. On the structure of instantaneous plumes in the atmosphere[J]. Journal of Hazardous Materials, 1983, 7(2):87-112.
    [99]
    Farrell J A, Li W, Pang S, et al. Chemical plume tracing experimental results with a REMUS AUV[C]//OCEANS 2003. Piscataway, USA:IEEE, 2003:962-968.
    [100]
    Tian Y, Kang X D, Li Y Y, et al. Identifying rhodamine dye plume sources in near-shore oceanic environments by integration of chemical and visual sensors[J]. Sensors, 2013, 13(3):3776-3798.
    [101]
    Li W, Farrell J A, Pang S, et al. Moth-inspired chemical plume tracing on an autonomous underwater vehicle[J]. IEEE Transactions on Robotics, 2006, 22(2):292-307.
    [102]
    Hu H K, Song S J, Chen C L P. Plume tracing via model-free reinforcement learning method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(8):2515-2527.
    [103]
    Marani G, Choi S K, Yuh J. Underwater autonomous manipulation for intervention missions AUVs[J]. Ocean Engineering, 2009, 36(1):15-23.
    [104]
    Ribas D, Palomeras N, Ridao P, et al. Girona 500 AUV:From survey to intervention[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(1):46-53.
    [105]
    Maurelli F, Lane D, Kormushev P, et al. The PANDORA project:A success story in AUV autonomy[C]//OCEANS 2016. Piscataway, USA:IEEE, 2016. DOI:10.1109/OCEANSAP. 2016.7485618.
    [106]
    张广玉,何玉庆,代波,等.面向抓取作业的飞行机械臂系统及其控制[J].机器人,2019,41(1):19-29.

    Zhang G Y, He Y Q, Dai B, et al. Towards grasping task:System and control of an aerial manipulator[J]. Robot, 2019, 41(1):19-29.
    [107]
    Jin L, Li S, Yu J G, et al. Robot manipulator control using neural networks:A survey[J]. Neurocomputing, 2018, 285:23-34.
    [108]
    Thuruthel T G, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators:A survey[J]. Soft Robotics, 2018, 5(2):149-163.
    [109]
    Inga J, Köpf F, Flad M, et al. Individual human behavioridentification using an inverse reinforcement learning method[C]//IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, USA:IEEE, 2017:99-104.
    [110]
    Hobson B W, Bellingham J G, Kieft B, et al. Tethys-class long range AUVs——Extending the endurance of propeller-driven cruising AUVs from days to weeks[C]//IEEE/OES Autonomous Underwater Vehicles Conference. Piscataway, USA:IEEE, 2012. DOI: 10.1109/AUV.2012.6380735.
    [111]
    张钹.人工智能进入后深度学习时代[J].智能科学与技术学报,2019,1(1):4-6.

    Zhang B. Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technologies, 2019, 1(1):4-6.

Catalog

    Article views (656) PDF downloads (1017) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return