Citation: | ZHAI Shuo, YU Zheng, JIN Bo. Research Status and Development Trend of Hydraulic Control System for Multi-legged Walking Robot[J]. ROBOT, 2018, 40(6): 958-968. DOI: 10.13973/j.cnki.robot.170579 |
[1] |
Zhuang H C, Gao H B, Deng Z Q, et al. A review of heavy-duty legged robots[J]. Science China Technological Sciences, 2014, 57(2):298-314.
|
[2] |
丁良宏,王润孝,冯华山,等.浅析BigDog四足机器人[J].中国机械工程,2012,23(5):505-514.
Ding L H, Wang R X, Feng H S, et al. Brief analysis of a BigDog quadruped robot[J]. China Mechanical Engineering, 2012, 23(5):505-514.
|
[3] |
Mosher R S. Test and evaluation of a versatile walking truck[C]//Proceedings of Off-Road Mobility Research Symposium. 1968:359-379.
|
[4] |
Waldron K, McGhee R. The adaptive suspension vehicle[J]. IEEE Control Systems Magazine, 1986, 6(6):7-12.
|
[5] |
Billingsley J, Visala A, Dunn M. Robotics in agriculture and forestry[M]//Springer Handbook of Robotics. Berlin, Germany:Springer-Verlag, 2008:1065-1077.
|
[6] |
Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2):10822-10825.
|
[7] |
Boston Dynamics. LS3-Legged squad support systems[EB/OL].[2017-10-17]. http://www.bostondynamics.com/robot_ls3.html.
|
[8] |
Boston Dynamics. WildCat-The world's fastest quadruped robot[EB/OL].[2017-10-17]. http://www.bostondynamics.com/robot_cheetah.html.
|
[9] |
Boston Dynamics. Spot-Takes a kicking and keeps on ticking[EB/OL].[2017-10-17]. https://www.bostondynamics.com/spot.
|
[10] |
Semini C. HyQ-Design and development of a hydraulically actuated quadruped robot[D]. Genoa, Italy:University of Genoa, 2010.
|
[11] |
Khan H, Kitano S, Frigerio M, et al. Development of the lightweight hydraulic quadruped robot-MiniHyQ[C]//IEEE International Conference on Technologies for Practical Robot Applications. Piscatatway, USA:IEEE, 2015:1-6.
|
[12] |
Nonami K, Barai R K, Irawan A, et al. Hydraulically actuated hexapod robots:Design, implementation and control[M]. Berlin, Germany:Springer-Verlag, 2014.
|
[13] |
Doi T, Hodoshima R, Hirose S, et al. Development of a quadruped walking robot to work on steep slopes, TITAN XI (walking motion with compensation for compliance)[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscatatway, USA:IEEE, 2005:3413-3418.
|
[14] |
Kim T J, So B, Kwon O, et al. The energy minimization algorithm using foot rotation for hydraulic actuated quadruped walking robot with redundancy[C]//41st International Symposium on Robotics and 6th German Conference on Robotics. Piscatatway, USA:IEEE, 2010:1-6.
|
[15] |
Cho J, Jin T K, Park S, et al. JINPOONG, posture control for the external force[C]//International Symposium on Robotics. Piscataway, USA:IEEE, 2013:1-2.
|
[16] |
柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf的设计与实现[J].机器人,2014,36(4):385-391.
Chai H, Meng J, Rong X W, et al. Design and implementation of SCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014, 36(4):385-391.
|
[17] |
Li M T, Jiang Z Y, Wang P F, et al. Control of a quadruped robot with bionic springy legs in trotting gait[J]. Journal of Bionic Engineering, 2014, 11(2):188-198.
|
[18] |
胡楠,李少远,黄丹,等.高负载四足机器人的步态规划与控制[J].系统仿真学报,2015,27(3):529-533.
Hu N, Li S Y, Huang D, et al. Gait planning and control of quadruped robot with high payload[J]. Journal of System Simulation, 2015, 27(3):529-533.
|
[19] |
Gao J, Duan X, Huang Q, et al. The research of hydraulic qua-druped bionic robot design[C]//ICME International Conference on Complex Medical Engineering. Piscataway, USA:IEEE, 2013:620-625.
|
[20] |
Cai R, Chen Y, Hou W, et al. Trotting gait of a quadruped robot based on the time-pose control method[J]. International Journal of Advanced Robotic Systems, 2013, 10(2):148.
|
[21] |
李昔学,留沧海,刘佳生,等.大型重载液压驱动六足机器人样机实验[J].机械设计与研究,2016,32(6):28-31.
Li X X, Liu C H, Liu J S, et al. Experimental study on the prototype of a large heavy-duty hydraulic hexapod robot[J]. Machine Design & Research, 2016, 32(6):28-31.
|
[22] |
吴娇杨,刘品,胡勇胜,等.锂离子电池和金属锂离子电池的能量密度计算[J].储能科学与技术,2016,5(4):443-453.
Wu J Y, Liu P, Hu Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science & Technology, 2016, 5(4):443-453.
|
[23] |
Kumar S. Role of hydrogen in the energy sector[M]. Clean Hydrogen Production Methods. Berlin, Germany:Springer-Verlag, 2015:1-9.
|
[24] |
荣学文.SCalf液压驱动四足机器人的机构设计与运动分析[D].济南:山东大学,2013.Rong X W. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Jinan:Shandong University, 2013.
|
[25] |
Quan Z Y, Quan L, Zhang J M. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology[J]. Renewable & Sustainable Energy Reviews, 2014, 35(1):336-346.
|
[26] |
孟延军,陈敏.液压传动[M].1版.北京:冶金工业出版社,2008:102.Meng Y J, Chen M. Hydraulic transmission[M]. 1st ed. Beijing:Metallurgical Industry Press, 2008:102.
|
[27] |
蒋云峰,许威,姚其昌.四足仿生移动平台车载液压动力系统设计[J].兵工学报,2014,35(1):80-85.
Jiang Y F, Xu W, Yao Q C. Design of vehicle-mounted hydraulic power system of bionic quadruped mobile platform[J]. Acta Armamentarii, 2014, 35(1):80-85.
|
[28] |
Jin T K, Cho J S, Park B Y, et al. Experimental investigation on the design of leg for a hydraulic actuated quadruped robot[C]//International Symposium on Robotics. Piscataway, USA:IEEE, 2013:1-5.
|
[29] |
Wang J, Gao F, Zhang Y. High power density drive system of a novel hydraulic quadruped robot[C]//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences. New York, USA:ASME, 2014:1-7.
|
[30] |
Krupp B T, Pratt J E. A power autonomous monopedal robot[C]//Sensors, and Command, Control, Communications, and Intelligence Technologies for Homeland Security and Homeland Defense V. 2006. DOI: 10.1117/12.666253.
|
[31] |
Chu Z, Luo J W, Fu Y L. Variable stiffness control and implementation of hydraulic SEA based on virtual spring leg[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2016:677-682.
|
[32] |
Vanderborght B, Albu-Schaffer A, Bicchi A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614.
|
[33] |
Dominguez G A, Kamezaki M, French M, et al. Development of a backdrivable magnetorheological hydraulic piston for passive and active linear actuation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE, 2015:6551-6556.
|
[34] |
Dominguez G A, Kamezaki M, French M, et al. Modelling and simulation of a new magnetorheological linear device[C]//IEEE International Symposium on Robotics and Intelligent Sensors. Piscataway, USA:IEEE, 2015:235-240.
|
[35] |
Xue Y, Yang J H, Shang J Z, et al. Design and optimization of a new kind of hydraulic cylinder for mobile robots[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2015, 229(18):3459-3472.
|
[36] |
Xue Y, Yang J H, Shang J Z, et al. Energy efficient fluid power in autonomous legged robotics based on bionic multi-stage energy supply[J]. Advanced Robotics, 2014, 28(21):1445-1457.
|
[37] |
Guglielmino E, Semini C, Yang Y, et al. Energy efficient fluid power in autonomous legged robotics[C]//ASME Dynamic Systems and Control Conference. New York, USA:ASME, 2009:847-854.
|
[38] |
Guglielmino E, Semini C, Kogler H, et al. Power hydraulics-switched mode control of hydraulic actuation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2010:3031-3036.
|
[39] |
Zhang J, Xue Y, Yang J H, et al. Mobile robot hydraulic drive energy-saving circuit simulation based on the high-frequency switching valve[J]. Applied Mechanics & Materials, 2013, 278(1):568-575.
|
[40] |
Peng S, Branson D, Guglielmino E, et al. Simulated performance assessment of different digital hydraulic configurations for use on the HyQ leg[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2012:36-41.
|
[41] |
Al-Kharusi S, Howard D. The design and simulated performance of an energy efficient hydraulic legged robot[M]//Climbing and Walking Robots. Berlin, Germany:Springer-Verlag, 2005:495-501.
|
[42] |
Waldron K J, Vohnout V J, Pery A, et al. Configuration design of the adaptive suspension vehicle[J]. International Journal of Robotics Research, 1984, 3(2):37-48.
|
[43] |
Kaminaga H, Ono J, Nakashima Y, et al. Development of backdrivable hydraulic joint mechanism for knee joint of humanoid robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:1577-1582.
|
[44] |
Kaminaga H, Tanaka H, Yasuda K, et al. Screw pump for electro-hydrostatic actuator that enhances backdrivability[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2011:434-439.
|
[45] |
Huang J H, Quan L, Zhang X G. Development of a dual-acting axial piston pump for displacement-controlled system[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2014, 228(4):606-616.
|
[46] |
Cunha T B, Semini C, Guglielmino E, et al. Gain scheduling control for the hydraulic actuation of the HyQ robot leg[C]//ABCM Symposium Series in Mechatronics.[S.l.]:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM), 2010:673-682.
|
[47] |
Ke X, Lin L, Qing W, et al. Design of single leg foot force controller for hydraulic actuated quadruped robot based on ADRC[C]//Chinese Control Conference. Piscataway, USA:IEEE, 2015:1228-1233.
|
[48] |
韩京清.从PID技术到"自抗扰控制"技术[J].控制工程,2002,9(3):13-18.
Han J Q. From PID to active disturbance rejection control[J]. Control Engineering of China, 2002, 9(3):13-18.
|
[49] |
Boaventura T, Buchli J, Semini C, et al. Model-based hydraulic impedance control for dynamic robots[J]. IEEE Transactions on Robotics, 2015, 31(6):1324-1336.
|
[50] |
Focchi M, Guglielmino E, Semini C, et al. Control of a hydraulically-actuated quadruped robot leg[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:4182-4188.
|
[51] |
Bech M M, Andersen T O, Pedersen H C, et al. Experimental evaluation of control strategies for hydraulic servo robot[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2013:342-347.
|
[52] |
Bu F P, Yao B. Observer based coordinated adaptive robust control of robot manipulators driven by single-rod hydraulic actuators[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2000:3034-3039.
|
[53] |
Bu F P, Yao B. Desired compensation adaptive robust control of single-rod electro-hydraulic actuator[C]//American Control Conference. Piscataway, USA:IEEE, 2001:3926-3931.
|
[54] |
Mohanty A, Yao B. Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3):567-575.
|
[55] |
Mattila J, Koivumaki J, Caldwell D G, et al. A survey on control of hydraulic robotic manipulators with projection to future trends[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):669-680.
|
[56] |
Semini C, Barasuol V, Boaventura T, et al. Towards versatile legged robots through active impedance control[J]. International Journal of Robotics Research, 2015, 34(7):1003-1020.
|
[57] |
Boaventura T, Medrano-Cerda G A, Semini C, et al. Stability and performance of the compliance controller of the quadruped robot HyQ[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:1458-1464.
|
[58] |
Irawan A, Nonami K. Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain[J]. Journal of Field Robotics, 2011, 28(5):690-713.
|
[59] |
Irawan A, Nonami K, Ohroku H, et al. Adaptive impedance control with compliant body balance for hydraulically driven hexapod robot[J]. Journal of System Design and Dynamics, 2011, 5(5):893-908.
|
[60] |
Montes H, Armada M. Force control strategies in hydraulically actuated legged robots[J]. International Journal of Advanced Robotic Systems, 2016, 13(2):50.
|
[61] |
Koivumaki J, Mattila J. Stability-guaranteed force-sensorless contact force/motion control of heavy-duty hydraulic manipulators[J]. IEEE Transactions on Robotics, 2015, 31(4):918-935.
|
[62] |
Koivumaki J, Mattila J. Stability-guaranteed impedance control of hydraulic robotic manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):601-612.
|
[63] |
巴凯先,孔祥东,朱琦歆,等.液压驱动单元基于位置——力的阻抗控制机理分析与试验研究[J].机械工程学报,2017,53(12):172-185.
Ba K X, Kong X D, Zhu Q X, et al. Position/force-based impedance control and their experimental research on hydraulic drive unit[J]. Journal of Mechanical Engineering, 2017, 53(12):172-185.
|
[64] |
Yang H Y, Pan M. Engineering research in fluid power:A review[J]. Journal of Zhejiang University:Science A, 2015, 16(6):427-442.
|
[65] |
Khan H, Kitano S, Gao Y, et al. Development of a lightweight on-board hydraulic system for a quadruped robot[C]//The Fourteenth Scandinavian International Conference on Fluid Power. Linköping, Sweden:Linköping University Electronic Press, 2015:1-11.
|
[66] |
Raade J M, Amundson K R, Kazerooni H. Developmentof hydraulic-electric power units for mobile robots[C]//Proceed-ings of ASME International Mechanical Engineering Congress and Exposition. New York, USA:ASME, 2005:27-34.
|
[67] |
Alfayad S, Ouezdou F B, Namoun F, et al. High performance integrated electro-hydraulic actuator for robotics-Part I:Principle, prototype design and first experiments[J]. Sensors and Actuators A:Physical, 2011, 169(1):115-123.
|
[68] |
Alfayad S, Ouezdou F B, Namoun F, et al. High performance integrated electro-hydraulic actuator for robotics-Part Ⅱ:Theoretical modelling, simulation, control & comparison with realmeasurements[J]. Sensors and Actuators A:Physical, 2011, 169(1):124-132.
|
[69] |
Semini C, Goldsmith J, Manfredi D, et al. Additive manufacturing for agile legged robots with hydraulic actuation[C]//Interna-tional Conference on Advanced Robotics. Piscataway, USA:IEEE, 2015:123-129.
|
[70] |
El Asswad M, Tayba A, Abdellatif A, et al. Development of lightweight hydraulic cylinder for humanoid robots applications[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017. DOI: 10.1177/0954406217731794.
|
[71] |
Du C, Plummer A R, Johnston D N. Performance analysis of a new energy-efficient variable supply pressure electro-hydraulic motion control method[J]. Control Engineering Practice, 2017, 60(1):87-98.
|
[72] |
Guglielmino E, Cannella F, Semini C, et al. A vibration study of a hydraulically-actuated legged machine[C]//ASME International Mechanical Engineering Congress and Exposition. New York, USA:ASME, 2010:1077-1083.
|
[73] |
Amundson K, Raade J, Harding N, et al. Development of hybrid hydraulic-electric power units for field and service robots[J]. Advanced Robotics, 2006, 20(9):1015-1034.
|
[74] |
Yang Y S, Semini C, Guglielmino E, et al. Water vs. oil hydraulic actuation for a robot leg[C]//International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2009:1940-1946.
|
[75] |
Stojanovic V, Nedic N. A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform[J]. Journal of Optimization Theory and Applications, 2016, 168(1):332-347.
|
[76] |
Wang D, He H B, Liu D R. Adaptive critic nonlinear robust control:A survey[J]. IEEE Transactions on Cybernetics, 2017, 47(10):3429-3451.
|
[77] |
Lu S M, Li D J. Adaptive neural network control for nonlinear hydraulic servo-system with time-varying state constraints[J]. Complexity, 2017, 2017(8):1-11.
|