引用本文: 张明德, 王加林, 张卫青, 王兴龙. 整体螺旋桨叶片型面机器人砂带抛磨方法[J]. 机器人, 2015, 37(3): 318-326,368.
ZHANG Mingde, WANG Jialin, ZHANG Weiqing, WANG Xinglong. Robotic Belt Grinding Method for the Surface of Whole Propeller Blade[J]. ROBOT, 2015, 37(3): 318-326,368.
 Citation: ZHANG Mingde, WANG Jialin, ZHANG Weiqing, WANG Xinglong. Robotic Belt Grinding Method for the Surface of Whole Propeller Blade[J]. ROBOT, 2015, 37(3): 318-326,368.

## Robotic Belt Grinding Method for the Surface of Whole Propeller Blade

• 摘要: 针对整体螺旋桨叶片型面抛磨过程易发生干涉、普通数控磨床难以加工的难题，设计了一套与整体螺旋桨叶片特点相适应的机器人砂带磨削系统.首先， 融合实际抛磨过程中砂带以及接触轮的弹性变形和宽度等因素， 建立了机器人砂带抛磨的数学模型.然后，依据接触轮运动过程中目标点的可达性， 运用笛卡儿空间坐标变换的方法获得了机器人各关节理想位姿.进一步，将砂带的灵活抛磨空间进行了优化并在 VERICUT 上实现抛磨仿真.采用川 崎 RS20N 类型的 6R 构型机器人进行了抛磨实验，结果与抛磨前叶片型面特征点位置比较，偏差小于 ±0.1mm.实验表明，采用该方法能够较 好地满足实际加工要求、有效提高螺旋桨叶片表面加工质量.

Abstract: Facing the problems of the interference easily occurred during the grinding of propeller blade surface, and the processing difficulties by CNC (computer numerical controlled) grinding machine, a robotic belt grinding system is designed adapting to the propeller blades. Firstly, mathematical model of robotic belt grinding is established combining the elastic deformation, the width and other factors of the belt and the contact wheel in actual grinding process. Then, the desired position and orientation of each joint of the robot can be obtained by the Descartes spatial coordinate (DSC) transformation according to the accessibility of the target point of the moving contact wheel. Furthermore, optimizations for the dexterous grinding workspace of belt and the grinding simulation are achieved through VERICUT. The grinding experiment is performed on Kawasaki RS20N, a robot of 6R configuration. The resulting deviation is less than ± 0.1mm comparing with the position of the blade surface feature point. It shows that the method can meet all actual processing requirements, and can improve the surface machining quality of the whole propeller.

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈