徐嘉骏, 张添一, 黄恺真, 曹凯, 吉爱红, 徐林森. 仿生柔性外肢体机器人的优化设计与实现[J]. 机器人, 2024, 46(2): 147-157. DOI: 10.13973/j.cnki.robot.230199
引用本文: 徐嘉骏, 张添一, 黄恺真, 曹凯, 吉爱红, 徐林森. 仿生柔性外肢体机器人的优化设计与实现[J]. 机器人, 2024, 46(2): 147-157. DOI: 10.13973/j.cnki.robot.230199
XU Jiajun, ZHANG Tianyi, HUANG Kaizhen, CAO Kai, JI Aihong, XU Linsen. Optimal Design and Implementation of a Bioinspired Soft Supernumerary Robotic Limb[J]. ROBOT, 2024, 46(2): 147-157. DOI: 10.13973/j.cnki.robot.230199
Citation: XU Jiajun, ZHANG Tianyi, HUANG Kaizhen, CAO Kai, JI Aihong, XU Linsen. Optimal Design and Implementation of a Bioinspired Soft Supernumerary Robotic Limb[J]. ROBOT, 2024, 46(2): 147-157. DOI: 10.13973/j.cnki.robot.230199

仿生柔性外肢体机器人的优化设计与实现

Optimal Design and Implementation of a Bioinspired Soft Supernumerary Robotic Limb

  • 摘要: 纤维增强型驱动器(FRA)受到了章鱼触手多肌纤维生物学特性的启发,有望用于外肢体机器人(SRL)完成多样化的运动。本文首先介绍了FRA实现伸长、膨胀、弯曲、扭转变形的驱动原理,阐述了FRA的制备流程,并在此基础上提出了采用FRA的柔性外肢体机器人的设计与实现方法。通过建立FRA的分析模型,揭示了驱动器在不同变形模态下其构形参数与输入气压对变形量的影响规律,并通过有限元仿真加以验证。此外,还提出了柔性外肢体机器人轨迹优化算法,通过构建多目标优化函数并基于置信域方法优化各FRA的设计参数,协助穿戴者完成规定任务。通过样机试验测试了本文的外肢体机器人的系统性能,该外肢体机器人可以有效提升穿戴舒适性,实现3维空间中的灵活运动。研究结果表明,采用FRA的柔性外肢体机器人在穿戴舒适性、动作多样性、控制精准性等方面优于现有的柔性外肢体机器人。

     

    Abstract: Inspired by the biological characteristics of the octopus tentacles with multiple muscle fibers, fiber-reinforced actuators (FRAs) are expected to be incorporated into supernumerary robotic limbs (SRLs) to achieve a wide range of motions. This paper firstly introduces the actuation mechanism of FRAs, which exhibit multiple deformation modes including extending, expanding, bending, and twisting motions. The fabrication process of the FRAs is then explained, and the design and implementation of the SRL driven by FRAs are proposed. Furthermore, analytic models of FRAs are established to elucidate the influence of the configuration parameters and the input air pressures on the deformation amplitude in different deformation modes. Subsequently, the analytic models are validated by finite element simulation. In addition, a trajectory optimization algorithm is developed for SRL, in which a multi-objective optimization function is formulated and the trust region method is employed to optimize the design parameters of each FRA. This algorithm effectively assists the wearer in accomplishing predetermined tasks. Finally, prototype experiments are conducted to validate the system performance of the proposed SRL. This SRL can effectively improve wearing comfort, and can realize flexible motion in three-dimensional space. The research results demonstrate that the SRL driven by FRAs is superior to the state-of-the-art soft SRLs in terms of providing a comfortable wearing experience, enabling various motions, and ensuring precise control.

     

/

返回文章
返回