王向阳, 陈春杰, 马跃, 曹武警, 吴新宇. 并联式髋关节外骨骼设计与基于人机耦合动力学方法的系统实现[J]. 机器人, 2024, 46(3): 339-350. DOI: 10.13973/j.cnki.robot.230149
引用本文: 王向阳, 陈春杰, 马跃, 曹武警, 吴新宇. 并联式髋关节外骨骼设计与基于人机耦合动力学方法的系统实现[J]. 机器人, 2024, 46(3): 339-350. DOI: 10.13973/j.cnki.robot.230149
WANG Xiangyang, CHEN Chunjie, MA Yue, CAO Wujing, WU Xinyu. Design of a Parallel Hip Exoskeleton and Its System Implementation Based on Human-Machine Integrated Dynamics[J]. ROBOT, 2024, 46(3): 339-350. DOI: 10.13973/j.cnki.robot.230149
Citation: WANG Xiangyang, CHEN Chunjie, MA Yue, CAO Wujing, WU Xinyu. Design of a Parallel Hip Exoskeleton and Its System Implementation Based on Human-Machine Integrated Dynamics[J]. ROBOT, 2024, 46(3): 339-350. DOI: 10.13973/j.cnki.robot.230149

并联式髋关节外骨骼设计与基于人机耦合动力学方法的系统实现

Design of a Parallel Hip Exoskeleton and Its System Implementation Based on Human-Machine Integrated Dynamics

  • 摘要: 同构串联式外骨骼普遍存在人体生物关节轴线与外骨骼机械关节的转动轴线发生偏移(即人机关节失配)的问题。为此, 本文提出了一款并联式髋关节外骨骼, 通过新型的结构设计消除了人机关节失配的问题和穿戴前繁琐的人机关节校对环节, 同时具有人体髋关节的所有运动自由度, 并实现髋关节屈曲/伸展和外展/内收方向的助力。另外, 为解决并联外骨骼驱动力耦合问题, 提出了基于人机耦合动力学模型的控制方法, 实现了各支链驱动器的协同助力控制。最后, 构建了可穿戴外骨骼样机系统, 在穿戴者身上开展了1类外骨骼运动性能验证实验和4类运动助力实验, 实验结果验证了所提出外骨骼与人体良好的运动相容性以及控制器助力的有效性。

     

    Abstract: Misalignment between the axes of the human biological joint and the exoskeleton mechanical joint remains an open problem for serial anthropomorphic exoskeletons. To solve this problem, a hip exoskeleton with parallel structure is proposed. With the novel structure, the misalignment between the biological and mechanical joints is eliminated, and therefore the exhausting alignment process of mechanical adjustment before use. In addition, all the hip biological degrees of freedom (DoFs) can be achieved by the proposed exoskeleton, and the hip flexion/extension and abduction/adduction motion can be assisted. To address the problem of coupled actuation introduced by parallel structure, a control method based on human-machine integrated dynamic model is proposed, which enables coordinated control of branch actuators so that assistance can be delivered properly. Moreover, a physical exoskeleton prototype is built. The motion pattern of the proposed exoskeleton is verified in an experiment and the assistive performance is verified by other four experiments. The results demonstrate the kinematic compatibility of the proposed hip exoskeleton and the assistive performance of the controller.

     

/

返回文章
返回