高明, 孔德天, 任超, 张婧一, 马书根. 尾部带有推进器的水下蛇形机器人的高效运动模式[J]. 机器人, 2023, 45(4): 462-471. DOI: 10.13973/j.cnki.robot.220095
引用本文: 高明, 孔德天, 任超, 张婧一, 马书根. 尾部带有推进器的水下蛇形机器人的高效运动模式[J]. 机器人, 2023, 45(4): 462-471. DOI: 10.13973/j.cnki.robot.220095
GAO Ming, KONG Detian, REN Chao, ZHANG Jingyi, MA Shugen. Efficient Motion Modes of Underwater Snake Robots with Rear Thrusters[J]. ROBOT, 2023, 45(4): 462-471. DOI: 10.13973/j.cnki.robot.220095
Citation: GAO Ming, KONG Detian, REN Chao, ZHANG Jingyi, MA Shugen. Efficient Motion Modes of Underwater Snake Robots with Rear Thrusters[J]. ROBOT, 2023, 45(4): 462-471. DOI: 10.13973/j.cnki.robot.220095

尾部带有推进器的水下蛇形机器人的高效运动模式

Efficient Motion Modes of Underwater Snake Robots with Rear Thrusters

  • 摘要: 目前水下机器人已经在海洋开发中的探查、监控、搜救和维护等领域广泛应用。而水下蛇形机器人作为多关节、高灵活性的水下机器人,在运动效率、功能执行、环境适应、自主学习等方面相比传统水下机器人更具优势。本文针对一类尾部带有推进器的水下蛇形机器人的运动效率问题,提出了一种结合蜿蜒运动和推进器推进的高效运动模式。首先建立水下蛇形机器人动力学模型。然后通过运输经济度量法来评价蛇形机器人的运动效率,基于此评价方法采用非支配排序遗传算法(NSGA-Ⅱ)对3个蜿蜒步态参数(关节运动的幅值、关节运动的频率、关节之间的相位角偏差)和推进器推力共4个运动参数进行仿真优化。优化结果表明,在3种运动模式中:在低速段采用蜿蜒模式效率最高;在中速段,采用蜿蜒运动与推进器推进相结合的混合运动模式效率最优,该情况下不仅能够达到蜿蜒模式难以达到的速度,而且整体的运动效率高于推进器模式;在高速段,仅由推进器提供动力具有最高的运动效率和最大前向运动速度。最后,通过水池实验,验证了所提出的运动模式的有效性,该模式可以最大程度地发挥带有推进器的水下蛇形机器人的运动能力,提高机器人的运动效率,并延长其电池续航时间。

     

    Abstract: Currently, underwater robots are used in the fields of exploration, monitoring, search & rescue, and maintenance in ocean development. As a multi-joint and highly flexible underwater robot, the underwater snake robots are superior to traditional underwater robots in terms of motion efficiency, function execution, environment adaptation, and autonomous learning. For the motion efficiency problem of underwater snake robots with a rear thruster, an efficient motion mode combining lateral undulation motion and thruster propulsion is proposed. Firstly, the dynamic model of underwater snake robot is established. Then, the motion efficiency of the snake robot is evaluated by the transportation economic metric method. Based on this evaluation method, the NSGA-Ⅱ (non-dominated sorting genetic algorithm Ⅱ) is used to optimize four kinematic parameters, including three lateral undulation gait parameters (the amplitude of joint motion, the frequency of joint motion, the phase shift between the joints) and the thruster force. The optimization results of the three motion modes show that: in the low-speed segment, the lateral undulation mode is of the highest efficiency; in the medium speed segment, the hybrid motion mode combining lateral undulation motion and thruster propulsion, is of the highest efficiency, and in this mode, not only the speed is much faster than that of the lateral undulation mode, but also the overall motion efficiency is higher than that in the thruster mode; in the high-speed segment, the thruster mode is of the highest efficiency and the fastest forward motion speed. Finally, the effectiveness of the proposed motion mode is verified by pool experiments. It maximizes the movement ability of the underwater snake robots with thrusters, improves the movement efficiency of the robot, and elongates the battery life.

     

/

返回文章
返回