武东杰, 仲训昱, 崔晓珍, 彭侠夫, 杨功流. 可在线配置结构的多源融合位姿估计框架[J]. 机器人, 2022, 44(6): 660-671. DOI: 10.13973/j.cnki.robot.210319
引用本文: 武东杰, 仲训昱, 崔晓珍, 彭侠夫, 杨功流. 可在线配置结构的多源融合位姿估计框架[J]. 机器人, 2022, 44(6): 660-671. DOI: 10.13973/j.cnki.robot.210319
WU Dongjie, ZHONG Xunyu, CUI Xiaozhen, PENG Xiafu, YANG Gongliu. Multi-Source Fusion Pose Estimation Framework with Online Configurable Structure[J]. ROBOT, 2022, 44(6): 660-671. DOI: 10.13973/j.cnki.robot.210319
Citation: WU Dongjie, ZHONG Xunyu, CUI Xiaozhen, PENG Xiafu, YANG Gongliu. Multi-Source Fusion Pose Estimation Framework with Online Configurable Structure[J]. ROBOT, 2022, 44(6): 660-671. DOI: 10.13973/j.cnki.robot.210319

可在线配置结构的多源融合位姿估计框架

Multi-Source Fusion Pose Estimation Framework with Online Configurable Structure

  • 摘要: 针对组合导航系统中,融合算法结构难以在线进行配置的问题,基于误差状态扩展卡尔曼滤波器(ES-EKF)和标准观测模型库,提出一种不依赖特定平台、可在线配置结构的多源融合估计框架,赋予组合导航系统动态变更信息源融合方式的能力。对多种导航子系统的输出信息进行分类和建模,建立一个不依赖于特定传感器和平台的标准观测模型库。设计一种算法结构的表示规则,将算法结构映射为融合模式,实现信息源和变量的灵活选择。基于该融合估计框架,设计并实现了一个惯性测量单元/磁力计/编码器/相机/激光雷达组合导航系统。最后,在野外数据集上进行了多种测试,该系统能够通过人工静态地或自主动态地变更融合模式灵活配置融合算法的结构,且定位精度优于robot-localization算法。试验结果表明,该框架可有效地实现多源融合估计、可在线地配置融合结构。

     

    Abstract: The structure of the fusion algorithm is difficult to be configured online in existing integrated navigation systems. Facing that problem, a multi-source fusion estimation framework is proposed based on the error-state extended Kalman filter (ES-EKF) and the standard observation model library. It doesn't depend on any specific platform and can be configured online, so the integrated navigation system can dynamically change the way that information sources are fused. The output information of various navigation subsystems is classified and modeled, and a standard observation model library is established, with no dependence on any specific sensor or platform. A representation rule of algorithm structure is designed to map the algorithm structure to a fusion mode and realize the flexible selection of information sources and variables. Based on the fusion estimation framework, an inertial measurement unit (IMU) / magnetometer / encoder / camera / LiDAR integrated navigation system is designed and implemented. Finally, various tests are performed on the field dataset. The system can flexibly configure the structure of the fusion algorithm by changing the fusion mode manually-statically or autonomously-dynamically, and the positioning accuracy is better than robot-localization algorithm. The experimental results show that the framework can realize multi-source fusion estimation effectively and the fusion structure can be configured online.

     

/

返回文章
返回