[1] |
van Ham R, Sugar T G, Vanderborght B, et al. Compliant actuator designs: Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications[J]. IEEE Robotics and Automation Magazine, 2009, 16(3): 81-94. 
|
[2] |
余慧杰.具有生理学特性的高精度人体肌肉疲劳建模及 其在手臂屈伸运动中的应用研究[D].上海:复旦大学,2008. Yu H J. Development of a high-fidelity human muscle fatigue model with physiological characteristics for use in the modeling of the elbow flexor-extensor motion[D]. Shanghai: Fudan University, 2008.
|
[3] |
臧克江.编织型气动人工肌肉工作机理及设计理论研究[D].哈尔滨:东北林业大学,2012. Zang K J. Mechanism and design theory research of braided type pneumatic artificial muscle[D]. Harbin: Northeast Forestry University, 2012.
|
[4] |
Tagliamonte N L, Sergi F, Accoto D, et al. Double actuation architectures for rendering variable impedance in compliant robots: A review[J]. Mechatronics, 2012, 22(8): 1187-1203. 
|
[5] |
Vanderborght B, Albu-Schaeffer A, Bicchi A, et al. Variable impedance actuators: A review[J]. Robotics and Autonomous Systems, 2013, 61(12): 1601-1614. 
|
[6] |
祁宏钟,雷雨成,冯晋祥.变刚度螺旋弹簧的设计方法 和精确建模初探[J].中国机械工程,2002,13(13):1100-1102.
Qi H Z, Lei Y C, Feng J X. Preliminary study on design method of nonlinear spring and precise modeling[J]. China Mechanical Engineering, 2002, 13(13): 1100-1102.
|
[7] |
Osada M, Ito N, Nakanishi Y, et al. Realization of flexible motion by musculoskeletal humanoid “Kojiro” with add-on nonlinear spring units[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2010: 174-179.
|
[8] |
Nakanishi Y, Ito N, Shirai T, et al. Design of powerful and flexible musculoskeletal arm by using nonlinear spring unit and electromagnetic clutch opening mechanism[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2011: 377-382.
|
[9] |
Friedl W, Chalon M, Reinecke J, et, al. FAS a flexible antagonistic spring element for a high performance over actuated hand[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 1366-1372.
|
[10] |
van Ham R, Vanderborght B, van Damme M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10): 761-768. 
|
[11] |
Huang T H, Huang H P, Kuan J Y. Mechanism and control of continuous-state coupled elastic actuation[J]. Journal of Intelligent and Robotic Systems, 2014, 74(3/4): 571-587.
|
[12] |
Yeo S H, Yang G, Lim W B. Design and analysis of cabledriven manipulators with variable stiffness[J]. Mechanism and Machine Theory, 2013, 69: 230-244.
|
[13] |
Jafari A, Tsagarakis N G, Caldwell D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS)[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 355-365. 
|
[14] |
Kim B S, Song J B. Design and control of a variable stiffness actuator based on adjustable moment arm[J]. IEEE Transactions on Robotics, 2012, 28(5): 1145-1151. 
|
[15] |
Visser L C, Carloni R, Stramigioli S. Energy-efficient variable stiffness actuators[J]. IEEE Transactions on Robotics, 2011, 27(5): 865-875. 
|
[16] |
Tsagarakis N G, Sardellitti I, Caldwell D G. A new variable stiffness actuator (CompAct-VSA): Design and modelling[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 378-383.
|
[17] |
Groothuis S S, Rusticelli G, Zucchelli A, et al. The variable stiffness actuator vsaUT-II: Mechanical design, modeling, and identification[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 589-597. 
|
[18] |
Fumagalli M, Barrett E, Stramigioli S, et al. The mVSA-UT: A miniaturized differential mechanism for a continuous rotational variable stiffness actuator[C]//IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA: IEEE, 2012: 1943-1948.
|
[19] |
Jafari A, Tsagarakis N G, Sardellitti I, et al. A new actuator with adjustable stiffness based on a variable ratio lever mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 55-63. 
|
[20] |
Wang R J, Huang H P. Active variable stiffness elastic actuator: Design and application for safe physical human-robot interaction[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2010: 1417-1422.
|
[21] |
Choi J, Hong S, Lee W, et al. A robot joint with variable stiffness using leaf springs[J]. IEEE Transactions on Robotics, 2011, 27(2): 229-238. 
|
[22] |
Migliore S A, Brown E A, DeWeerth S P. Novel nonlinear elastic actuators for passively controlling robotic joint compliance[J]. Journal of Mechanical Design, 2007, 129(4): 406-412. 
|
[23] |
Vanderborght B, Tsagarakis N G, Ham R V, et al. MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobino1D[J]. Autonomous Robots, 2011, 31(1): 55-65. 
|
[24] |
Nam K H, Kim B S, Song J B. Compliant actuation of paralleltype variable stiffness actuator based on antagonistic actuation[J]. Journal of Mechanical Science and Technology, 2010, 24(11): 2315-2321. 
|
[25] |
Osada M, Ito N, Nakanishi Y, et al. Stiffness readout in musculo-skeletal humanoid robot by using rotary potentiometer[C]//IEEE Sensors Conference. Piscataway, USA: IEEE, 2010: 2329-2333.
|
[26] |
Nordin M, Frankel V H. Basic biomechanics of the musculoskeletal system[M]. Philadelphia, USA: Lippincott Williams & Wilkins, 2011.
|
[27] |
徐红旗,张欣,冉令华,等.应用等张模式测定人体单关 节肌群功率发展与保持能力的方法学研究[J].人类工效 学,2011,17(4):13-18.
Xu H Q, Zhang X, Ran L H, et al. Methodology research on evaluating the developmental and retentive capacity level of human single-joint muscular power in mode of isotonic test[J]. Chinese Journal of Ergonomics, 2011, 17(4): 13-18.
|
[28] |
Abul-Haj C, Hogan N. An emulator system for developing improved elbow-prosthesis designs[J]. IEEE Transactions on Biomedical Engineering, 1987, 34(9): 724-737.
|
[29] |
Zhang L Q, Nuber G, Butler J, et al. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position[J]. Journal of Biomechanics, 1998, 31(1): 71-7
|