机械式仿骨骼肌变刚度机构原理及设计

王颜, 房立金

王颜, 房立金. 机械式仿骨骼肌变刚度机构原理及设计[J]. 机器人, 2015, 37(4): 506-512. DOI: 10.13973/j.cnki.robot.2015.0506
引用本文: 王颜, 房立金. 机械式仿骨骼肌变刚度机构原理及设计[J]. 机器人, 2015, 37(4): 506-512. DOI: 10.13973/j.cnki.robot.2015.0506
WANG Yan, FANG Lijin. Principle and Design of Mechanically Musculoskeletal Variable-Stiffness Mechanism[J]. ROBOT, 2015, 37(4): 506-512. DOI: 10.13973/j.cnki.robot.2015.0506
Citation: WANG Yan, FANG Lijin. Principle and Design of Mechanically Musculoskeletal Variable-Stiffness Mechanism[J]. ROBOT, 2015, 37(4): 506-512. DOI: 10.13973/j.cnki.robot.2015.0506
王颜, 房立金. 机械式仿骨骼肌变刚度机构原理及设计[J]. 机器人, 2015, 37(4): 506-512. CSTR: 32165.14.robot.2015.0506
引用本文: 王颜, 房立金. 机械式仿骨骼肌变刚度机构原理及设计[J]. 机器人, 2015, 37(4): 506-512. CSTR: 32165.14.robot.2015.0506
WANG Yan, FANG Lijin. Principle and Design of Mechanically Musculoskeletal Variable-Stiffness Mechanism[J]. ROBOT, 2015, 37(4): 506-512. CSTR: 32165.14.robot.2015.0506
Citation: WANG Yan, FANG Lijin. Principle and Design of Mechanically Musculoskeletal Variable-Stiffness Mechanism[J]. ROBOT, 2015, 37(4): 506-512. CSTR: 32165.14.robot.2015.0506

机械式仿骨骼肌变刚度机构原理及设计

基金项目: 

辽宁省高等学校创新团队项目(LT2014006)

详细信息
    作者简介:

    王 颜(1986-),女,博士生.研究领域:仿生结构设计.

    房立金(1965-),男,博士,教授.研究领域:机器人及自动化控制系统.

    通信作者:

    房立金,ljfang@mail.neu.edu.cn

  • 中图分类号: TP242

Principle and Design of Mechanically Musculoskeletal Variable-Stiffness Mechanism

  • 摘要: 随着物理性人机交互的增加,人机安全性等问题引起关注.应用于机器人关节中的机械式仿骨骼肌变刚度机构因其能够模仿骨骼肌的变刚度特性,故可以解决人机安全性和未知环境适应性等问题.通过对国外机器人变刚度关节结构设计的研究,总结了机械式仿骨骼肌变刚度机构的非线性变刚度原理,将其结构设计实现方法分为 5 类,并分析了这 5 类结构设计实现的优缺点,为设计安全性高、适应性强的机器人提供参考和依据.
    Abstract: With the growth of physical human-robot interface, the security of human-robot interface has attracted attention recently. Mechanically musculoskeletal variable-stiffness mechanisms applied to robot joints can solve the problems about human-robot security and unknown environmental adaptability by imitating the variable stiffness property of skeletal muscle. Many mechanism designs of variable stiffness joints of overseas robots are studied. The nonlinear variable stiffness principle of mechanically musculoskeletal variable-stiffness mechanisms is summarized. Mechanism design methods are classified into five categories, and their advantages and disadvantages are analyzed. The analysis results might provide references for designs of highly-safe and well-adapted robots.
  • [1]

    van Ham R, Sugar T G, Vanderborght B, et al. Compliant actuator designs: Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications[J]. IEEE Robotics and Automation Magazine, 2009, 16(3): 81-94.  

    [2] 余慧杰.具有生理学特性的高精度人体肌肉疲劳建模及 其在手臂屈伸运动中的应用研究[D].上海:复旦大学,2008. Yu H J. Development of a high-fidelity human muscle fatigue model with physiological characteristics for use in the modeling of the elbow flexor-extensor motion[D]. Shanghai: Fudan University, 2008.
    [3] 臧克江.编织型气动人工肌肉工作机理及设计理论研究[D].哈尔滨:东北林业大学,2012. Zang K J. Mechanism and design theory research of braided type pneumatic artificial muscle[D]. Harbin: Northeast Forestry University, 2012.
    [4]

    Tagliamonte N L, Sergi F, Accoto D, et al. Double actuation architectures for rendering variable impedance in compliant robots: A review[J]. Mechatronics, 2012, 22(8): 1187-1203.  

    [5]

    Vanderborght B, Albu-Schaeffer A, Bicchi A, et al. Variable impedance actuators: A review[J]. Robotics and Autonomous Systems, 2013, 61(12): 1601-1614.  

    [6] 祁宏钟,雷雨成,冯晋祥.变刚度螺旋弹簧的设计方法 和精确建模初探[J].中国机械工程,2002,13(13):1100-1102.

    Qi H Z, Lei Y C, Feng J X. Preliminary study on design method of nonlinear spring and precise modeling[J]. China Mechanical Engineering, 2002, 13(13): 1100-1102.

    [7]

    Osada M, Ito N, Nakanishi Y, et al. Realization of flexible motion by musculoskeletal humanoid “Kojiro” with add-on nonlinear spring units[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2010: 174-179.

    [8]

    Nakanishi Y, Ito N, Shirai T, et al. Design of powerful and flexible musculoskeletal arm by using nonlinear spring unit and electromagnetic clutch opening mechanism[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2011: 377-382.

    [9]

    Friedl W, Chalon M, Reinecke J, et, al. FAS a flexible antagonistic spring element for a high performance over actuated hand[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 1366-1372.

    [10]

    van Ham R, Vanderborght B, van Damme M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot[J]. Robotics and Autonomous Systems, 2007, 55(10): 761-768.  

    [11]

    Huang T H, Huang H P, Kuan J Y. Mechanism and control of continuous-state coupled elastic actuation[J]. Journal of Intelligent and Robotic Systems, 2014, 74(3/4): 571-587.

    [12]

    Yeo S H, Yang G, Lim W B. Design and analysis of cabledriven manipulators with variable stiffness[J]. Mechanism and Machine Theory, 2013, 69: 230-244.

    [13]

    Jafari A, Tsagarakis N G, Caldwell D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS)[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 355-365.  

    [14]

    Kim B S, Song J B. Design and control of a variable stiffness actuator based on adjustable moment arm[J]. IEEE Transactions on Robotics, 2012, 28(5): 1145-1151.  

    [15]

    Visser L C, Carloni R, Stramigioli S. Energy-efficient variable stiffness actuators[J]. IEEE Transactions on Robotics, 2011, 27(5): 865-875.  

    [16]

    Tsagarakis N G, Sardellitti I, Caldwell D G. A new variable stiffness actuator (CompAct-VSA): Design and modelling[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 378-383.

    [17]

    Groothuis S S, Rusticelli G, Zucchelli A, et al. The variable stiffness actuator vsaUT-II: Mechanical design, modeling, and identification[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 589-597.  

    [18]

    Fumagalli M, Barrett E, Stramigioli S, et al. The mVSA-UT: A miniaturized differential mechanism for a continuous rotational variable stiffness actuator[C]//IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA: IEEE, 2012: 1943-1948.

    [19]

    Jafari A, Tsagarakis N G, Sardellitti I, et al. A new actuator with adjustable stiffness based on a variable ratio lever mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 55-63.  

    [20]

    Wang R J, Huang H P. Active variable stiffness elastic actuator: Design and application for safe physical human-robot interaction[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2010: 1417-1422.

    [21]

    Choi J, Hong S, Lee W, et al. A robot joint with variable stiffness using leaf springs[J]. IEEE Transactions on Robotics, 2011, 27(2): 229-238.  

    [22]

    Migliore S A, Brown E A, DeWeerth S P. Novel nonlinear elastic actuators for passively controlling robotic joint compliance[J]. Journal of Mechanical Design, 2007, 129(4): 406-412.  

    [23]

    Vanderborght B, Tsagarakis N G, Ham R V, et al. MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobino1D[J]. Autonomous Robots, 2011, 31(1): 55-65.  

    [24]

    Nam K H, Kim B S, Song J B. Compliant actuation of paralleltype variable stiffness actuator based on antagonistic actuation[J]. Journal of Mechanical Science and Technology, 2010, 24(11): 2315-2321.  

    [25]

    Osada M, Ito N, Nakanishi Y, et al. Stiffness readout in musculo-skeletal humanoid robot by using rotary potentiometer[C]//IEEE Sensors Conference. Piscataway, USA: IEEE, 2010: 2329-2333.

    [26]

    Nordin M, Frankel V H. Basic biomechanics of the musculoskeletal system[M]. Philadelphia, USA: Lippincott Williams & Wilkins, 2011.

    [27] 徐红旗,张欣,冉令华,等.应用等张模式测定人体单关 节肌群功率发展与保持能力的方法学研究[J].人类工效 学,2011,17(4):13-18.

    Xu H Q, Zhang X, Ran L H, et al. Methodology research on evaluating the developmental and retentive capacity level of human single-joint muscular power in mode of isotonic test[J]. Chinese Journal of Ergonomics, 2011, 17(4): 13-18.

    [28]

    Abul-Haj C, Hogan N. An emulator system for developing improved elbow-prosthesis designs[J]. IEEE Transactions on Biomedical Engineering, 1987, 34(9): 724-737.

    [29]

    Zhang L Q, Nuber G, Butler J, et al. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position[J]. Journal of Biomechanics, 1998, 31(1): 71-7

计量
  • 文章访问数:  92
  • HTML全文浏览量:  1947
  • PDF下载量:  800
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭