基于全景视觉与里程计的移动机器人自定位方法研究

Omni-vision and Odometer Based Self-localization for Mobile Robot

  • 摘要: 通过分析全景视觉与里程计传感器的感知模型的不确定性,提出了一种基于路标观测的移动机器人自定位算法.该算法利用卡尔曼滤波器,融合多种传感器在不同观测点获取的观测数据完成机器人自定位.与传统的、采用单一传感器自定位的方法相比,它利用视觉和里程计的互补特性,提高了自定位的精度.实验结果证明了上述方法的有效性.

     

    Abstract: By analyzing the uncertainties in perception models of omni-vision and odometer systems for mobile robot, a landmark-observation-based self-localization method with Kalman filter is proposed, which fuses the data from multiple sensors at successive observation points. Compared with single-sensor methods, it exploits the differences in uncertainty between omni-vision and odometer systems, and consequently improves the self-localization precision of mobile robot. The experimental results show the validity and feasibility of the proposed method.

     

/

返回文章
返回