RoboCup四腿组比赛中定位算法的实验比较

An Experimental Comparison of Localization Methods in RoboCup Four-legged League

  • 摘要: 针对RoboCup四腿组比赛场地结构对称和特征不唯一的特点,在场地模型中对带数据校验的扩展卡尔曼滤波(EKF-V)、多假设定位(MHL)、蒙特卡洛定位(MCL)和自适应蒙特卡洛定位(A-MCL)四种算法的全局定位精度和对噪声的鲁棒性进行了仿真实验比较.实验结果表明,四种算法在噪声可估计的条件下都能达到较高的全局定位精度,而MCL和A-MCL对噪声有较高的鲁棒性,更适合应用于RoboCup四腿组比赛.

     

    Abstract: For RoboCup four-legged league field with symmetrical structure and non-unique features,the global localization accuracy and robustness against noises of four localization methods,including Extended Kalman Filter with data Validation(EKF-V),Multiple Hypothesis Localization(MHL),Monte Carlo Localization(MCL) and Adaptive Monte Carlo Localization(A-MCL),are compared in a simulated field model.The experimental results show that all the algorithms achieve high accuracy when the noise can be estimated.However,MCL and A-MCL are preferable when applying to RoboCup four-legged league due to their robustness against noises.

     

/

返回文章
返回