使用NDT激光扫描匹配的移动机器人定位方法

蔡则苏, 洪炳镕, 魏振华

蔡则苏, 洪炳镕, 魏振华. 使用NDT激光扫描匹配的移动机器人定位方法[J]. 机器人, 2005, 27(5): 414-419.
引用本文: 蔡则苏, 洪炳镕, 魏振华. 使用NDT激光扫描匹配的移动机器人定位方法[J]. 机器人, 2005, 27(5): 414-419.
CAI Ze-su, HONG Bing-rong, WEI Zhen-hua. Localization of Mobile Robots by NDT Laser Scan Matching Algorithm[J]. ROBOT, 2005, 27(5): 414-419.
Citation: CAI Ze-su, HONG Bing-rong, WEI Zhen-hua. Localization of Mobile Robots by NDT Laser Scan Matching Algorithm[J]. ROBOT, 2005, 27(5): 414-419.

使用NDT激光扫描匹配的移动机器人定位方法

详细信息
    作者简介:

    蔡则苏(1967-),男,博士生,副教授.研究领域:定位和地图生成,虚拟现实.
    洪炳鎔(1937-),男,教授,博士生导师.研究领域:智能机器人,虚拟现实,机器人足球.

  • 中图分类号: TP24

Localization of Mobile Robots by NDT Laser Scan Matching Algorithm

  • 摘要: 提出一种将基于扫描匹配的蒙特卡洛定位方法,作为移动机器人完成自主任务的鲁棒性定位方法.采用一种新的正态分布转换(NDT)激光扫描匹配算法,将从单个激光扫描重构的2D离散数据点集转换成2维平面内分段连续可微的概率分布,并使用Hessian矩阵法与另外的扫描相匹配,可以避免点与点之间对应的复杂问题.实验结果表明,该定位算法可以利用自然环境特征有效地完成室内环境下的自主定位.
    Abstract: Monte Carlo localization scheme with a scan matching algorithm is suggested as a robust localization method for mobile robots to accomplish their tasks autonomously.A normal distributions transform(NDT) which is a new approach to laser scan matching is applied to the scan matching algorithm,and this scan matching method transforms the discrete set of 2D points reconstructed from a single scan into a piecewise continuous and differentiable probability distribution defined on the 2D plane,which can be used to match another scan by using Hessian Matrix.Thereby,no point to point correspondences have to be established.Experimental results show that the robot is able to accomplish localization autonomously in an indoor environment using the natural environmental characteristics.
  • [1] Clark F O. Probabilistic self-localization for mobile robots[J]. IEEE Transactions on Robotics and Automation, 2000, 16(1):55-66.
    [2] Duckett T, Nehmzow U. Mobile robot self-localisation using occupancy histograms and a mixture of Gaussian location hypotheses[J]. Robotics and Autonomous Systems, 1999, 34(2/3):117-129.
    [3] Gutmann J S, Schlege C. AMOS:comparison of scan matching approaches for self-localization in indoor environments[A]. Proceedings of the Euromicro Workshop on Advanced Mobile Robots(EUROBOT96)[C]. Kaiserslautern, Germany:1996. 61-67.
    [4] Bengtsson O, Baerveldt A-J. An improvement of the COX scan matching algorithm for dynamic environments[EB/OL]. http:∥www2.hh. se/staff/bools/kkprojβengtsson_baerveldt ecmr03. pdf, 2003.
    [5] Bengtsson O, Baerveldt A-J. Localization in changing environmentsestimation of a covariance matrix for the IDC algorithm[J]. Robotics and Autonomous Systems, 2003, 44(1):29-40.
    [6] Crowley J L, Wallner F, Schiele B. Position estimation using principal components of range data[J]. Robotics and Autonomous Systems,1998, 23(4):267-276.
    [7] Biber P, Straβer W. The normal distributions transform:a new approach to laser scan matching[A]. Proceedings of the 2003 IEEE/RJS International Conference on Intelligent Robots and Systems[C]. Las Vegas, USA:IEEE, 2003. 2743-2748.
    [8] Gutmann J-S, Fox D. An experimental comparison of localization methods continued[A] Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. Lausanne,Switzerland:IEEE, 2002. 454-459.
    [9] Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligencce, 2001,128(1-2):99-141.
计量
  • 文章访问数:  61
  • HTML全文浏览量:  1818
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-12-07

目录

    /

    返回文章
    返回
    x 关闭 永久关闭