仿生振动翼推进器模糊控制实验研究

文力, 范哲, 王田苗, 梁建宏

文力, 范哲, 王田苗, 梁建宏. 仿生振动翼推进器模糊控制实验研究[J]. 机器人, 2010, 32(3): 306-313.
引用本文: 文力, 范哲, 王田苗, 梁建宏. 仿生振动翼推进器模糊控制实验研究[J]. 机器人, 2010, 32(3): 306-313.
WEN Li, FAN Zhe, WANG Tianmiao, LIANG Jianhong. Fuzzy Control of Biomimetic Propulsion Using Flapping Foil[J]. ROBOT, 2010, 32(3): 306-313.
Citation: WEN Li, FAN Zhe, WANG Tianmiao, LIANG Jianhong. Fuzzy Control of Biomimetic Propulsion Using Flapping Foil[J]. ROBOT, 2010, 32(3): 306-313.

仿生振动翼推进器模糊控制实验研究

详细信息
    作者简介:

    文力(1983- ),男,博士生.研究领域:仿生机器人技术.
    范哲(1986- ),男,硕士生.研究领域:仿生机器人技术.
    王田苗(1960- ),男,教授,博士生导师.研究领域:仿生机器人,医疗机器人,嵌入式系统.

    通信作者:

    文力, alexwen839501@sohu.com

  • 中图分类号: TP24

Fuzzy Control of Biomimetic Propulsion Using Flapping Foil

  • 摘要: 在水洞中对月牙尾鳍状的振动翼进行了水动力学实验,并讨论了St数、相对攻角、无量纲振幅、相位差为涡流控制参数的振动翼仿生推进的涡流控制方法.在尾鳍推进器平台上进行自由航行实验,结果表明,通过模糊控制方法主动控制振动翼的St数以及其余涡流控制参数,可以有效地减小平台的功耗,获取更高的游动速度,平台游动速度最高达1.87m/s,同时振动翼尾鳍的St数被控制在0.4~0.5.
    Abstract: Flapping lunate tail is studied through hydrodynamic test in water channel,and proper vorticity control methods for flapping foil propulsion are discussed based on the principal vorticity parameters,such as Strouhal number(St),angle of attack,the dimensionless transverse amplitude,and phase difference.Free-swimming test is carried out on an unmanned underwater vehicle with flapping tail.The results show that power consumption of vehicle can be reduced effectively through active control of St and other vorticity parameters using fuzzy control methods,and greater swimming speed can be obtained.The maximum swimming speed as high as 1.87 m/s is measured.Meanwhile,St of flapping tail is controlled within the range of 0.4~0.5.
  • [1] Triantafyllou M S,Triantafyllou G S,Yue D K P.Hydrodynamics of fishlike swimming[J].Annual Review of Fluid Mechanics,2000,32:33-53.
    [2] Anderson J M,Streitlien K,Barrett D S,et al.Oscillating foils of high propulsive efficiency[J].Journal of Fluid Mechanics,1998,360:41-72.
    [3] TriantafTllou M S,Triantafyllou G S,Gopalkrishnan R.Wake mechanics for thrust generation in oscillating foils[J].Physics of Fluids,A:Fluid Dynamics,1991,3(12):2835-2837.  
    [4] Read D A,Hover F S,Triantafyllou M S.Forces on oscillating foils for propulsion and maneuvering[J].Journal of Fluids and Structures,2003,17(1):163-183.  
    [5] Taylor G K,Nudds R L,Thomas A L R.Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency[J].Nature,2003,425(6959):707-711.  
    [6] Rohr J J,Fish F E.Strouhal numbers and optimization of swimming by odontocete cetaceans[J].The Journal of Experimental Biology,2004,207(10):1633-1642.  
    [7] Techet A H.Propulsive performance of biologically inspired flapping foils at high Reynolds numbers[J].The Journal of Experimental Biology,2008,211(2):274-279.  
    [8] Triantafyllon M S,Hover F S,Techet A H,et al.Review of hydrodynamic scaling laws in aquatic locomotion and fishlike swimming[J].Applied Mechanics Reviews,2005,58(1-6):226-236.
    [9] Anderson J M,Chhabra N K.Maneuvering and stability performalice of a robotic tuna[J].Integrative and Comparative Biology,2002,42(1):118-126.  
    [10] Kato N.Control performance in the horizontal plane of a fish robot with mechanical pectoral fins[J].IEEE Journal of Oceanic Engineering,2000,25(1):121-129.  
    [11] Liang J H.Propulsive mechanism of bionic undersea vehicle[D].Beijing:Beihang University,2006.
    [12] Wen L,Wang T M,Liang J H,et al.Fuzzy logic vorticity control of oscillating foil UUV[C]//IEEE/RSJ International Conference on Intelligent Robotics and Systems.Piscataway,NJ,USA:IEEE,2009:1019-1024.
    [13] Yu J Z,Tan M,Wang S,et al.Development of a biomimetic robotic fish and its control algorithm[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,2004,34(4):1798-1810.  
    [14] Menozzi A,Leinhos H A,Beal D N,et al.Open-loop control of a multifin biorobotic rigid underwater vehicle[J].IEEE Journal of Oceanic Engineering,2008,33(2):59-68.  
    [15] Barrett D S,Triantafyllou M S,Yue D K P,et al.Drag reduction in fish-like locomotion[J].Journal of Fluid Mechanics,1999,392:183-212.
    [16] Videler J J,Hess E Fast continuous swimming of two pelagic predators,saithe (pollachius virens) and mackerel (scomber scombrus):a kinematic analysis[J].The Journal of Experimental Biology,1984,109(1):209-228,
计量
  • 文章访问数:  33
  • HTML全文浏览量:  1193
  • PDF下载量:  319
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-17

目录

    /

    返回文章
    返回
    x 关闭 永久关闭