基于地面特征点匹配的无人驾驶车全局定位

方辉, 杨明, 杨汝清

方辉, 杨明, 杨汝清. 基于地面特征点匹配的无人驾驶车全局定位[J]. 机器人, 2010, 32(1): 55-60.
引用本文: 方辉, 杨明, 杨汝清. 基于地面特征点匹配的无人驾驶车全局定位[J]. 机器人, 2010, 32(1): 55-60.
FANG Hui, YANG Ming, YANG Ruqing. Ground Feature Point Matching Based Global Localization for Driverless Vehicles[J]. ROBOT, 2010, 32(1): 55-60.
Citation: FANG Hui, YANG Ming, YANG Ruqing. Ground Feature Point Matching Based Global Localization for Driverless Vehicles[J]. ROBOT, 2010, 32(1): 55-60.

基于地面特征点匹配的无人驾驶车全局定位

详细信息
    作者简介:

    方辉(1982- ),男,博士生.研究领域:移动机器人环境感知、定位和导航.
    杨明(1975- ),男,博士后,副教授.研究领域:计算机视觉,移动机器人及智能车导航.
    杨汝清(1944-2009),男,教授,博士生导师.研究领域:机器人系统与控制,机电一体化系统总体设计,特种机器人设计.

  • 中图分类号: TP242.6

Ground Feature Point Matching Based Global Localization for Driverless Vehicles

  • 摘要: 针对室外环境特点,设计将摄像机安装在车辆底部,提出一种基于地面特征点的地图匹配法以获取车辆定位信息.定位方法分为两步:(1)手动控制车辆在环境中运行,保存RTK(real-time kinematic)-GPS、里程计和摄像机等传感器数据,离线自动创建地面特征点地图,并利用一种特殊的地图组织方式来提高地图搜索和匹配效率;(2)利用地图匹配对车辆进行定位,其中采用一种基于M估计加权ICP(iterative closest point)算法的特征点对应和匹配参数求解方法,并进一步采用UKF(unscented Kalman filter)算法融合地图匹配和航位推算的结果以提高定位鲁棒性.实验结果表明了该方法的有效性.
    Abstract: Vehicle localization is achieved by a ground feature points based map matching approach,in which a camera is fixed downward on the bottom of the vehicle according to the outdoor environmental conditions.The proposed approach includes two steps:(1) a vehicle is manually controlled to move in an environment,recording sensor data from RTK(real-time kinematic)-GPS,odometry and camera to produce a ground feature point map automatically in an off-line manner.A special map organization is used to increase the efficiency of map search and matching.(2) vehicle localization is realized by map matching method,in which a M-estimator weighted ICP(iterative closest point) algorithm is utilized to match feature points and compute matching parameters.Furthermore,map matching result is fused with dead-reckoning by UKF(unscented Kalman filter) to achieve higher robustness.Experimental results demonstrate the effectiveness of the proposed approach.
  • [1] Panzieri S,Pascucci F,Ulivi G.An outdoor navigation system using GPS and inertial platform[J].IEEE/ASME Transactions on Mechatronics,2002,7(2):134-142.    
    [2] Lee D,Chung W,Kim M.A reliable position estimation method of the service robot by map matching[C]//IEEE International Conference on Robotics and Automation.Piscataway,N J,USA:IEEE,2003:2830-2835.
    [3] Se S,Lowe D,Little J.Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks[J].International Journal of Robotics Research,2002,21(8):735-758.  
    [4] Gresetti G,Tipaldi G D,Stachniss C,et al.Fast and accurate SLAM with Rao-Blackwellized panicle filters[J].Robotics and Autonomous Systems,2007,55(1):30-38.  
    [5] Van der Merwe R,Wan E A.The square-root unscented Kalman filter for state and parameter-estimation[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ,USA:IEEE,2001:3461-3464.
    [6] Besl P J,McKay N D.A method for registration of 3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.  
计量
  • 文章访问数:  37
  • HTML全文浏览量:  1888
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-02-23

目录

    /

    返回文章
    返回
    x 关闭 永久关闭