基于神经网络的三维物体姿态测定

APPLICATION OF HOPFIELD NEURAL NETWORK TO DETERMINE THE POSE OF 3-D OBJECTS

  • 摘要: 利用单幅图象中物体的三条边与模型中的三条对应边,可求出三维物体姿态,但解不唯一,通过将这些可能姿态所产生的图象与实际图象匹配,可求出唯一正确姿态.二维图象特征对应问题是个NP完全问题,存在组合爆炸的困难,为此,我们把特征对应问题看作一个组合优化问题,利用Hopfield网络成功解决这一组合优化问题.该算法通用性强,而且适合于并行实现.文中给出了在Ⅵ-COM图象处理系统上对人造图象和实际图象进行的实验结果.

     

    Abstract: A method for location of 3-D objects is introduced. 3-D objects attitude is first determined by the interpretation of three image lines as the perspective projection of three linear ridges of the object model. Then a Hopfield neural network is applied for determinig the pose of 3-D objects.

     

/

返回文章
返回