基于视觉的室外移动机器人障碍物检测方法

Vision-based Obstacle Detection Method for Outdoor Mobile Robot

  • 摘要: 针对复杂交通场景中的室外移动机器人,提出了一种基于小波模极大值和集成学习支持向量机的障碍物检测方法.首先引入了基于小波模极大值的奇异信号分析理论,对候选障碍物区域进行探测;然后,构建了一种基于集成学习改进的多分类支持向量机,对候选区域进行分类识别.实验中将该方法应用于多种交通场景(高速公路、城区道路),结果验证了其有效性、通用性和实时性.

     

    Abstract: An obstacle detection method based on wavelet transform module maximum(WTMM) and ensemble learning support vector machine(SVM) is proposed for outdoor mobile robot in complex traffic scenes.Firstly,the WTMM-based singularity analysis theory is introduced into the regions of interest(ROIs) detection of candidate obstacles.Then,an improved multi-class SVM based on ensemble learning is constructed to classify and recognize these ROIs.In the experiment, the proposed method is applied to various traffic scenes(e.g.,simple highway,complex urban street),and the result proves the validity,universality and real-time performance of the proposed method.

     

/

返回文章
返回