基于层迭CMAC网络的6-DOF机器人自适应控制

ADAPTIVE CONTROL OF 6-DOF PARALLEL MANIPULATOR BASED ON CASCADED CMAC

  • 摘要: 研究了标称自适应+迭代学习控制算法的稳定性,并利用层迭CMAC网络的优良特性,提出了基于层迭CMAC的标称自适应+迭代学习控制方法.此方法将标称自适应控制中确定的模型信息与未知的信息分离,充分利用模型中确定的信息进行前馈控制;而对于未知信息,则利用层迭CMAC进行自适应学习.仿真实验表明用本文所设计的控制系统对6-DOF并行机器人进行轨线控制,可获得比以往的普通CMAC+PD控制系统更好的控制效果.

     

    Abstract: In this paper, the stability of nominal adaptive plus iterative learning control is discussed. Using the excellent characteristics of cascaded CMAC, a new kind of adaptive control method based on cascaded CMAC is also proposed. This method divides the robot model into deterministic part and uncertain part. So the deterministic information can be employed to enrich advantages in control strategies and the uncertain part can be adaptively learned by using cascaded CMAC. Simulation had verified that using this control system for trajectory control of 6 DOF parallel manipulator, we can got more effective results than ordinary CMAC+PD control.

     

/

返回文章
返回