自适应带宽均值移动算法及目标跟踪

Adaptive Bandwidth Mean Shift Algorithm and Object Tracking

  • 摘要: 首先提出了一种经典均值移动算法的推广算法,即自适应带宽均值移动算法,进而提出了基于自适应带宽均值移动的二维视频目标跟踪算法(ABMSOT).前者提出了在带宽自适应情况下均值移动算法求取局部极值的框架步骤,后者可实时跟踪目标的位置、大小和方向.在ABMSOT算法中,目标模型和候选模型采用自适应带宽核函数加权特征直方图描述,目标模型和候选模型的相似性采用Bhattacharyya系数度量;通过迭代两步法搜索到目标最有可能的位置、大小和方向.第一步执行一次均值移动迭代搜索目标位置,第二步计算出最能描述目标区域大小和方向的带宽矩阵.从理论上证明了两个算法的收敛性,并通过实验证明了ABMSOT算法能实时跟踪目标的位置、大小和方向.

     

    Abstract: The classical mean shift algorithm is extended to be the adaptive bandwidth mean shift algorithm,and then the adaptive bandwidth mean shift object tracking algorithm(ABMSOT) is proposed.The former gives the general adaptive bandwidth mean shift framework for seeking the local maxima,and the latter can simultaneously tracks the position,scale and orientation in real time.For ABMSOT,the feature histogram weighted by a kernel with adaptive bandwidth is used to represent the target model and the candidate model.Similarity of the target model and the candidate model is measured by Bhattacharyya coefficient.A two step method is used iteratively to find the most probable target position,scale and orientation.The first step finds the object position using a mean shift iteration,and the second step finds the bandwidth matrix which best describes scale and orientation of the object region.The convergence of the two algorithms is proved theoretically.Experiments show that ABMSOT can successfully track the position,scale and orientation in real time.

     

/

返回文章
返回