基于神经网络的自主车辆导航路径计算
NEURAL-BASED ALGORITHM FOR AUTONOMOUS VEHICLE ROUTE GUIDANCE SYSTEMS
-
摘要: 本文提出一种基于Hopfield神经网络的自主车辆的最短路径计算的新方法,具有计算速度快、不需要改变神经网络结构的内部参数便能实时调整算法来适应网络边的费用及其图的拓扑关系的改变的特点.适用于城市交通线路上自主车辆的智能导航系统.Abstract: This paper presents a new algorithm for the autonomous vehicles'shortest path computing based on the Hopfield neural networks. Besides the higher computation speed, the algorithm can adapt in real time to changes in network topology and link costs without modifying the internal parameters of the neural net architecture. It can be applied to autonomous vehicles for urban route guidance systems.