一种超声测距的鲁棒自适应建模方法

A ROBUST ADAPTIVE MODELING METHOD FOR ULTRASONIC RANGE FINDER

  • 摘要: 分析了超声测距的工作原理及特点,提出了一种新型的鲁棒自适应建模方法.首先,利用在线递进滤波技术,有效地剔除采集数据中可能存在的“野点”;然后针对移动机器人中超声测距的不确定性特点,在自适应最小二乘估计(ALS)的基础上,结合模糊理论,实现了鲁棒自适应最小二乘(RALS)建模.最后,给出了一种基于x2检验的模型收敛性检验方法.通过实验对比分析,验证了RALS具有很好的实用性和鲁棒性,比较适合于移动机器人超声测距的建模.

     

    Abstract: In this paper, the problem of modeling ultrasonic range finder under uncertainty is described.-The inherent uncertainty in the sensor demands a "soft" and robust approach to modeling the problem. Based on adaptive least square (ALS) technology, a robust adaptive least square modeling (RALSM) method is presented. First, we take advantage of on-line adaptive filtering technology to kick out the error data. Then apply with fuzzy technology; we develop a RALS model for ultrasonic ranger finder. Finally, based on error analysis, a evaluation method to the proposed model is also presented. Experiments demonstrate the RLAS model with high feasibility, robustness and high self-adaptability as well.

     

/

返回文章
返回