一种基于视觉的步行机器人Monte Carlo自定位系统

A Vision-based Monte Carlo Self-localization System on a Walking Robot

  • 摘要: 提出了一种基于视觉的步行机器人自定位系统.该系统基于Monte Carlo定位方法,分别利用了人工地标和自然地标的高噪声的传感器信息,结合无反馈的里程计信息来完成自身定位.本系统对于自然地标的不唯一性做了特殊处理,融合多标志物的信息,并提出新的计算权重和样本重采样方法,以适应动态不确定的环境.在真实机器人上的实验结果表明,在高噪声的信息输入下,能够获得实时、准确、稳定的定位结果,能有效解决“绑架的机器人”问题.

     

    Abstract: This paper presents a vision-based localization system on legged robots.Based on Monte Carlo localization,the system makes use of high-noised sensor data of artificial and natural landmarks,along with odometry data without feedback.Special methods to deal with similar natural landmarks and to incorporate information from several landmarks,as well as a new method for weight calculation and particle resampling are presented.Results of experiments on real robots show that the system can adapt to a dynamically uncertain environment,remain accurate and stable under a high noised condition,solve the problem of kidnapped robots,and perform in real-time.

     

/

返回文章
返回