机器人操作器的奇异性鲁棒逆

ROBUST INVERSION OF SINGULARITY OF ROBOT MANIPULATORS

  • 摘要: 奇异性问题在用关节联接的机器人操作器的控制中是一个固有的问题.本文中.我们从考虑关节运动的精确性和可行性出发来确定操作器末端器所需运动时的关节运动.这种确定关节运动的方法称为具有奇异鲁棒逆的逆运动学解.之所以说它具有鲁棒性,是因为它在奇异点也能提供连续解.即使雅可比矩阵的逆或广义逆表示的道运动学解在奇异点或其周围不可行时,雅可比矩阵的奇异鲁棒逆也能为操作器末端器提供一个期望坐标轨迹的近似运动.对奇异鲁棒逆的特性与广义逆的特性进行了比较.并考虑了可行性的标量加权值.

     

    Abstract: The singularity problem is inherent in controlling articulated robot manipulators. In this paper, we determine the required joint motion of the end effectors by evaluating their accuracy and feasibility. The robust inversion of singularity of the Jacobian matrix provides a motion approaching to the desired cartesian trajectory at or in the neighborhood of singular points for the end effector, even when the inverse kinematic solution represented by Jacobian matric inversion or pscudo inversion is infeasible.

     

/

返回文章
返回