基于2维Tsallis熵的水下图像目标检测

唐旭东, 庞永杰, 张铁栋, 李晔

唐旭东, 庞永杰, 张铁栋, 李晔. 基于2维Tsallis熵的水下图像目标检测[J]. 机器人, 2010, 32(3): 289-297.
引用本文: 唐旭东, 庞永杰, 张铁栋, 李晔. 基于2维Tsallis熵的水下图像目标检测[J]. 机器人, 2010, 32(3): 289-297.
TANG Xudong, PANG Yongjie, ZHANG Tiedong, LI Ye. Detection of Objects in Underwater Images Based on the Two-Dimensional Tsallis Entropy[J]. ROBOT, 2010, 32(3): 289-297.
Citation: TANG Xudong, PANG Yongjie, ZHANG Tiedong, LI Ye. Detection of Objects in Underwater Images Based on the Two-Dimensional Tsallis Entropy[J]. ROBOT, 2010, 32(3): 289-297.

基于2维Tsallis熵的水下图像目标检测

详细信息
    作者简介:

    唐旭东(1983- ),男,博士生.研究领域:水下机器人智能控制,模式识别,管道跟踪.
    庞永杰(1955- ),男,教授,博士生导师.研究领域:水下机器人设计,运动仿真.

    通信作者:

    唐旭东, tangxudong@yahoo.cn

  • 中图分类号: TP242

Detection of Objects in Underwater Images Based on the Two-Dimensional Tsallis Entropy

  • 摘要: 针对传统图像检测方法在水下图像处理过程中存在目标区域定位不准确、目标细节丢失、目标形状变形的问题,文中利用Tsallis熵的非广延性,提出了一种基于边缘信息的2维直方图,并以最大2维Tsallis熵为准则,利用改进粒子群优化算法寻找最佳阈值.水下图像处理试验表明,该算法是一种有效的水下图像目标检测方法,与传统方法相比,具有更强的自适应性和鲁棒性.
    Abstract: For the problems in underwater image processing by traditional image detection methods,such as inaccurate location of objects regions,loss of object details and distortion of object shape,etc.,a new two-dimensional histogram based on edge information is proposed by utilizing the non-extensive property of Tsallis entropy.The improved particle swarm optimization(PSO) is used to search the best threshold value by maximizing the two-dimensional Tsallis entropy.The test results of some underwater images show that it is efficient to detect objects in underwater images.Comparing with traditional methods,the proposed approach shows better adaptability and robustness.
  • [1] 唐旭东,朱炜,庞永杰,等.水下机器人光视觉目标识别系统[J].机器人,2009,31(2):171-178.Tang Xudong,Zhu Wei,Pang Yongjie,et al.Target recognition system based on optical vision for AUV[J].Robot,2009,31(2):171-178.
    [2] 张铁栋,万磊,秦再白,等.基于离散分数布朗随机场的水下图像目标检测[J].光电工程,2008,35(8):41-46,96.Zhang Tiedong,Wan Lei,Qin Zaibai,et al.Underwater image detection based on the discrete fractional Brownian random field[J].Opto-Electronic Engineering,2008,35(8):41-46,96.
    [3] 朱炜,徐玉如,秦再白.基于PSO和模糊划分熵的水下图像分割[J].光学技术,2007,33(5):754-758.Zhu Wei,Xu Yuru,Qin Zaibal.Underwater image segmentation based on particle swarm optimization and fuzzy partition entropy[J].Optical Technique,2007,33(5):754-758.
    [4] Rivera-Maldonado F J,Torres-Moniz R E,Jimenez-Rodriguaz L O.Hough transform for robust segmentation of underwater multispectral images[C]//Conference on Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery IX (SPIE vol.5093).Bellingham,WA,USA:SPIE,2003:591-600.
    [5] Furuichi S,Yanagi K,Kuriyama K.Fundamental properties of Tsallis relative entropy[J].Journal of Mathematical Physics,2004,45(12):4868-4877.  
    [6] Sezgin M,Sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168.  
    [7] Foresti G L,Gentili S.A vision based system for object detection in underwater images[J].International Journal of Pattern Recognition and Artificial Intelligence,2000,14(2):t67-188.
    [8] 王猛,白洪亮.同态滤波器在水下图像对比度增强中的应用[J].应用科技,2003,30(7):15-17.Wang Meng,Bai Hongliang.Underwater image contrast enhancement by homomorphic filtering[J].Applied Science and Technology,2003,30(7):15-17.
    [9] Kennedy J,Eberhart R C.Particle swarm optimiTation[C]//IEEE International Conference on Neural Networks.Piscataway,NJ,USA:IEEE,1995:1942-1948.
    [10] Eberhart R C,Shi Y.Particle swarm optimization:Developments,applications and resources[C]//IEEE Conference on Evolutionary Computation.Piscataway,NJ,USA:IEEE,2001:81-86.
    [11] Clerc M,Kennedy J.The particle swarm:Explosion,stability and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.  
    [12] Otsu N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.  
    [13] Sahoo P K,Arora G.Image thresholding using two-dimensional Tsallis-Havrda-Charvat entropy[J].Pattern Recognition Letters,2006,27(6):520-528.  
计量
  • 文章访问数:  42
  • HTML全文浏览量:  1533
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-11

目录

    /

    返回文章
    返回
    x 关闭 永久关闭