基于分层触发控制的机器人辅助肌力训练临床实验研究

徐国政, 宋爱国, 潘礼正, 高翔, 梁志伟, 徐宝国

徐国政, 宋爱国, 潘礼正, 高翔, 梁志伟, 徐宝国. 基于分层触发控制的机器人辅助肌力训练临床实验研究[J]. 机器人, 2013, 35(3): 269-275. DOI: 10.3724/SP.J.1218.2013.00269
引用本文: 徐国政, 宋爱国, 潘礼正, 高翔, 梁志伟, 徐宝国. 基于分层触发控制的机器人辅助肌力训练临床实验研究[J]. 机器人, 2013, 35(3): 269-275. DOI: 10.3724/SP.J.1218.2013.00269
XU Guozheng, SONG Aiguo, PAN Lizheng, GAO Xiang, LIANG Zhiwei, XU Baoguo. Clinical Experimental Research on a Hierarchically Triggered Control Method for Robot-assisted Muscle Strength Training[J]. ROBOT, 2013, 35(3): 269-275. DOI: 10.3724/SP.J.1218.2013.00269
Citation: XU Guozheng, SONG Aiguo, PAN Lizheng, GAO Xiang, LIANG Zhiwei, XU Baoguo. Clinical Experimental Research on a Hierarchically Triggered Control Method for Robot-assisted Muscle Strength Training[J]. ROBOT, 2013, 35(3): 269-275. DOI: 10.3724/SP.J.1218.2013.00269
徐国政, 宋爱国, 潘礼正, 高翔, 梁志伟, 徐宝国. 基于分层触发控制的机器人辅助肌力训练临床实验研究[J]. 机器人, 2013, 35(3): 269-275. CSTR: 32165.14.robot.2013.00269
引用本文: 徐国政, 宋爱国, 潘礼正, 高翔, 梁志伟, 徐宝国. 基于分层触发控制的机器人辅助肌力训练临床实验研究[J]. 机器人, 2013, 35(3): 269-275. CSTR: 32165.14.robot.2013.00269
XU Guozheng, SONG Aiguo, PAN Lizheng, GAO Xiang, LIANG Zhiwei, XU Baoguo. Clinical Experimental Research on a Hierarchically Triggered Control Method for Robot-assisted Muscle Strength Training[J]. ROBOT, 2013, 35(3): 269-275. CSTR: 32165.14.robot.2013.00269
Citation: XU Guozheng, SONG Aiguo, PAN Lizheng, GAO Xiang, LIANG Zhiwei, XU Baoguo. Clinical Experimental Research on a Hierarchically Triggered Control Method for Robot-assisted Muscle Strength Training[J]. ROBOT, 2013, 35(3): 269-275. CSTR: 32165.14.robot.2013.00269

基于分层触发控制的机器人辅助肌力训练临床实验研究

详细信息
    作者简介:

    徐国政(1979-), 男,博士,讲师.研究领域:机器人传感与网络化控制技术.
    宋爱国(1968-),男,博士,教授,博士生导师.研究领域:机器人传感与控制技术.
    潘礼正(1979-),男,博士生.研究领域:机器人传感与网络化控制技术.

    通信作者:

    徐国政,xgzseu@yahoo.com.cn

  • 中图分类号: TP242

Clinical Experimental Research on a Hierarchically Triggered Control Method for Robot-assisted Muscle Strength Training

  • 摘要: 针对目前机器人辅助抗阻训练过程中肌力训练方法大多是在参考轨迹设定框架内根据受试者的运动行为来设计底层阻力控制器的局限,提出一种新的模糊自适应分层触发肌力训练控制方法. 该方法无需事先设定训练参考轨迹,首先根据训练过程中患肢运动性能设计上层渐进抗阻基础阻力监督控制器,得到单节训练的基础阻力; 再通过计算单节训练过程中患肢生物阻抗的变化设计下层自适应阻力触发控制器,根据生物阻抗变化值对节内训练阻力作进一步调整.临床实验结果验证了所提控制策略的有效性.
    Abstract: A new fuzzy adaptive hierarchically triggered control method for muscle strength training is presented to solve the deficiency that the muscle strength training methods in existing robot-aided resistance training systems are all constructed within the framework of predefined reference trajectory by designing low-level resistive force controller according to the participant's motor behavior. The new method is developed without the need of predefined training trajectory, and firstly a high-level progressive resistance supervisory controller of resistive force is designed based on the impaired limb's motor performance to determine the basic resistive force for each training session. Secondly, a low-level adaptive resistive force triggered controller is constructed according to the impaired limb's bio-impedance changes to further adjust the resistive force in each training session. Finally, the effectiveness and potentialities of the proposed control strategy are verified with clinical experimental results.
  • [1] Ju M S, Lin C C K, Lin D H, et al. A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 349-358.  
    [2] Lum P S, Burgar C G, van der Loos M, et al. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study[J]. Journal of Rehabilitation Research and Development, 2006, 43(5): 631-642.  
    [3] Coote S, Murphy B, Harwin W, et al. The effect of the GENTLE/ s robot-mediated therapy system on arm function after stroke[J]. Clinical Rehabilitation, 2008, 22(5): 395-405.  
    [4] Wu M, Landry J M, Schmit B D, et al. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: A pilot study[J]. Archives of Physical Medicine and Rehabilitation, 2012, 93(5): 782-789.  
    [5] Den`eve A, Moughamir S, Afilal L, et al. Control system design of a 3-DOF upper limbs rehabilitation robot[J]. Computer Methods and Programs in Biomedicine, 2008, 89(2): 202-214.  
    [6] Taylor N F, Dodd K J, Damiano D L. Progressive resistance exercise in physical therapy: A summary of systematic reviews[J]. Physical Therapy, 2005, 85(11): 1208-1223.
    [7] Sharp I, Huang F, Patton J. Visual error augmentation enhances learning in three dimensions[J]. Journal of NeuroEngineering and Rehabilitation, 2011, 8: DOI 10.1186/1743-0003-8-52.
    [8] Veneman J F, Kruidhof R, Hekman E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 379-386.  
    [9] 纪树荣.运动疗法技术学[M].北京:华夏出版社,2005: 101-113. Ji S R. The technology of therapeutic exercises[M]. Beijing: Huaxia Publishing House, 2005: 101-113.
    [10] Xu G Z, Song A G, Li H J. Control system design for an upperlimb rehabilitation robot[J]. Advanced Robotics, 2011, 25(1/2): 229-251.
    [11] Mallapragada V, Erol D, Sarkar N. A new method of force control for unknown environments[J]. International Journal of Advanced Robotic Systems, 2007, 4(3): 313-322.
    [12] Chang J J, Tung W L, Wu W L, et al. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke[J]. Archives of Physical Medicine and Rehabilitation, 2007, 88(10): 1332-1338.  
计量
  • 文章访问数:  27
  • HTML全文浏览量:  998
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-13

目录

    /

    返回文章
    返回
    x 关闭 永久关闭