Abstract:
The motion planning algorithm of omni-directional mobile dual-arm robot (OMDAR) must cope with a group of optimization criteria simultaneously, such as different types, dimensions and ranges. The mathematical modeling method and resolving algorithm of the constrained OMDAR multi-objective motion planning mission are analyzed. Based on the product arbitration based multi-objective optimization algorithm, motion planning of the continuous trajectory of OMDAR is modeled as a single objective function which is constructed with the product of multi-objective performance functions and constraints. The problem is successfully resolved with the Gaussian rovering particle swarm optimization (GR-PSO) algorithm. To compare the performance of the GR-PSO algorithm and the classical sequential quadratic optimization (SQP) algorithm, continuous trajectory planning governed by 9-criteria optimization functions is resolved. The effectiveness and advantage of the GR-PSO are verified.