杨凯盛, 胡俊豪, 韩陈洁, 崔玉国, 王冲冲, 杨桂林. 绳驱动踝关节康复机器人的运动学与刚度研究[J]. 机器人, 2024, 46(4): 503-512. DOI: 10.13973/j.cnki.robot.240050
引用本文: 杨凯盛, 胡俊豪, 韩陈洁, 崔玉国, 王冲冲, 杨桂林. 绳驱动踝关节康复机器人的运动学与刚度研究[J]. 机器人, 2024, 46(4): 503-512. DOI: 10.13973/j.cnki.robot.240050
YANG Kaisheng, HU Junhao, HAN Chenjie, CUI Yuguo, WANG Chongchong, YANG Guilin. Study on Kinematics and Stiffness of a Cable-driven Ankle Rehabilitation Robot[J]. ROBOT, 2024, 46(4): 503-512. DOI: 10.13973/j.cnki.robot.240050
Citation: YANG Kaisheng, HU Junhao, HAN Chenjie, CUI Yuguo, WANG Chongchong, YANG Guilin. Study on Kinematics and Stiffness of a Cable-driven Ankle Rehabilitation Robot[J]. ROBOT, 2024, 46(4): 503-512. DOI: 10.13973/j.cnki.robot.240050

绳驱动踝关节康复机器人的运动学与刚度研究

Study on Kinematics and Stiffness of a Cable-driven Ankle Rehabilitation Robot

  • 摘要: 针对现有踝关节康复机器人存在的人机结构匹配度不高、柔顺性不足、适应性弱等问题,提出了一种新型绳驱动变刚度踝关节康复机器人。考虑到绳索的单向受力特性使得绳驱动机器人具有变刚度特性,基于柔性并联机构理论创新设计了一种结构简单紧凑、刚度—拉力线性度高的变刚度装置,以提高变刚度控制的范围和精度。通过康复机器人的运动静力学和刚度建模分析,揭示了调节绳索长度来调控机器人位姿,以及调节绳索张力来调控机器人刚度的规律。在此基础上,提出了面向刚度的绳索张力分配算法以实现刚度控制,并通过仿真案例验证了算法的可行性。最后,设计了绳驱动踝关节康复机器人的控制系统,研制了机器人样机,通过实验验证了机器人运动控制方法。研究结果表明所设计的绳驱动踝关节康复机器人具有人机结构匹配、刚度可调等优点。

     

    Abstract: Since the existing ankle rehabilitation robots are of poor human-machine structure matching, inferior compliance and weak adaptability, a novel cable-driven variable-stiffness ankle rehabilitation robot is proposed. Considering variable stiffness of the cable-driven robots due to unidirectional force transmission of the cable, a variable-stiffness device with simple, compact structure and high stiffness-tension linearity is designed based on flexible parallel mechanism theory, to improve the range and accuracy of variable-stiffness control. By modeling and analyzing the kinetictostatics and stiffness of the rehabilitation robot, it is found that the robot pose can be adjusted by regulating the cable lengths, and the robot stiffness can be adjusted by regulating the cable tensions. In order to achieve stiffness control, a stiffness-oriented cable tension distribution algorithm is proposed, and its effectiveness is verified by a simulation example. Finally, the control system and prototype of the cable-driven ankle rehabilitation robot are developed, and the motion control method is validated by an experiment. The results show that the proposed cable-driven ankle rehabilitation robot has the advantages of excellent human-machine structure matching and variable stiffness.

     

/

返回文章
返回