SUI-SLAM:一种面向室内动态环境的融合语义和不确定度的视觉SLAM方法

SUI-SLAM: A Semantics and Uncertainty Incorporated Visual SLAM Algorithm towards Dynamic Indoor Environments

  • 摘要: 为解决动态环境中移动物体对视觉SLAM(同步定位和地图构建)系统的干扰,提出一种融合深度语义和不确定度的动态视觉SLAM算法SUI-SLAM。首先基于Mask R-CNN(区域卷积神经网络)的语义分割结果获得场景的动态先验信息。然后利用图像深度信息修正分割区域边缘,进一步区分动态环境的前景及背景特征点。最终利用语义分割结果、移动先验信息以及几何误差,计算特征点与3D地图点之间的关联不确定度,同时在相机位姿优化过程中加入正则化项用于提升定位的准确度和鲁棒性。为验证算法的有效性,在TUM动态数据集上进行了实验。结果表明,SUI-SLAM算法相比ORB-SLAM2算法,在室内高动态场景中的定位精度最高可提升98.41%;与其他最先进的动态SLAM算法相比,SUI-SLAM算法的位姿估计精度和鲁棒性均有一定程度的提升。

     

    Abstract: In order to solve the interference of moving objects on visual SLAM (simultaneous localization and mapping) system in dynamic environment, SUI-SLAM (semantics and uncertainty incorporated SLAM), a dynamic visual SLAM algorithm integrating deep semantics and uncertainty, is proposed. Firstly, the dynamic prior information of the scene is obtained based on semantic segmentation using Mask R-CNN (region-based convolutional neural network). Then, the edge of the segmented area is corrected using the image depth information, to further distinguish the foreground and background feature points in dynamic environment. Finally, the semantic segmentation results, movement priors and geometric errors are used to calculate the uncertainty of the correspondence between the feature points and the 3D map points. Regularization items are added in the process of optimizing the camera pose to improve the accuracy and the robustness. In order to verify the algorithm effectiveness, experiments are carried out on the TUM dynamic datasets. Results show that the pose estimation accuracy of SUI-SLAM algorithm can be increased by up to 98.41% in indoor high dynamic scenes compared with ORBSLAM2 algorithm. While compared with other SOTA (state-of-the-art) dynamic SLAM algorithms, the pose estimation accuracy and the robustness of SUI-SLAM algorithm are also improved to a certain extent.

     

/

返回文章
返回