深度学习下的视觉SLAM综述

Survey of Visual SLAM Based on Deep Learning

  • 摘要: 本综述涵盖了深度学习技术应用到SLAM(同步定位与地图创建)领域的最新研究成果, 重点介绍和总结了深度学习在前端跟踪、后端优化、语义建图和不确定性估计中的研究成果, 展望了深度学习下视觉SLAM的发展趋势, 为后继者了解与应用深度学习技术、研究移动机器人自主定位和建图问题的可行性方案提供助力。

     

    Abstract: The review covers the latest research results of deep learning techniques applied to the field of SLAM(simultaneous localization and mapping), focusing on and summarizing the research results of deep learning in front-end tracking, back-end optimization, semantic mapping and uncertainty estimation, and looking forward to the development trends of visual SLAM under deep learning. This work can help the successors to understand and apply the deep learning techniques to studying the feasible solutions to the problem of autonomous localization and mapping for mobile robots.

     

/

返回文章
返回