考虑共同关注区域静态交谈群组检测的机器人导航及行为评价

Detecting Static Conversation Group with Common Concern Area for Robot Navigation and Behavior Evaluation

  • 摘要: 针对静态交谈群组,提出了一种基于共同关注区域的F型社交关系(F-formation)检测算法。该算法将行人的位置、方向作为输入构造群组的共同关注区域,采用一个基于滑动窗口的最大值滤波器检测群组中心,然后根据群组中心进行群组聚类。在实现静态交谈群组检测的基础上,构造群组舒适空间,并基于多层代价地图机制将群组舒适空间模型应用于时间依赖的A*路径规划算法,实现了考虑群组舒适的移动机器人导航。除此之外,具有社交感知能力的机器人导航行为给予人的舒适感受难以定量评价,本文搭建了一个基于图卷积网络的机器人行为评价模型。实验结果显示该评价网络达到了与人类相似的机器人行为评价能力,可视化分析结果显示了评价网络结果的合理性。通过评价网络对机器人轨迹进行评估,发现考虑静态交谈群组的机器人能够产生更加满足人类舒适感受的运动轨迹。

     

    Abstract: An F-formation detection algorithm based on common concern areas is proposed for static conversation group. It takes the position and direction of pedestrians as input to construct the common concern area of groups. Then a sliding window-based maximum filter is used to detect the group center for clustering. After detecting the static conversation group, a group comfort space is constructed for a time-dependent A* path planning algorithm based on multi-layer costmap mechanism. Thus, mobile robot navigation considering group comfort is realized. In addition, it is challenging to quantitatively evaluate whether a robot's navigation behavior is socially acceptable. A graph convolutional network-based model for evaluating robot behavior is constructed. Experimental results show that the evaluation network has a similar capacity to humans in evaluating the robot behavior. Visualization results show the rationality of the evaluation network's results. According to the evaluation network, robots considering static conversation group can produce more comfortable trajectories.

     

/

返回文章
返回