疏水表面冷凝的可控毛细力微对象操作方法与实验

范增华, 荣伟彬, 王乐锋, 孙立宁

范增华, 荣伟彬, 王乐锋, 孙立宁. 疏水表面冷凝的可控毛细力微对象操作方法与实验[J]. 机器人, 2015, 37(6): 648-654. DOI: 10.13973/j.cnki.robot.2015.0648
引用本文: 范增华, 荣伟彬, 王乐锋, 孙立宁. 疏水表面冷凝的可控毛细力微对象操作方法与实验[J]. 机器人, 2015, 37(6): 648-654. DOI: 10.13973/j.cnki.robot.2015.0648
FAN Zenghua, RONG Weibin, WANG Lefeng, SUN Lining. Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface[J]. ROBOT, 2015, 37(6): 648-654. DOI: 10.13973/j.cnki.robot.2015.0648
Citation: FAN Zenghua, RONG Weibin, WANG Lefeng, SUN Lining. Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface[J]. ROBOT, 2015, 37(6): 648-654. DOI: 10.13973/j.cnki.robot.2015.0648
范增华, 荣伟彬, 王乐锋, 孙立宁. 疏水表面冷凝的可控毛细力微对象操作方法与实验[J]. 机器人, 2015, 37(6): 648-654. CSTR: 32165.14.robot.2015.0648
引用本文: 范增华, 荣伟彬, 王乐锋, 孙立宁. 疏水表面冷凝的可控毛细力微对象操作方法与实验[J]. 机器人, 2015, 37(6): 648-654. CSTR: 32165.14.robot.2015.0648
FAN Zenghua, RONG Weibin, WANG Lefeng, SUN Lining. Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface[J]. ROBOT, 2015, 37(6): 648-654. CSTR: 32165.14.robot.2015.0648
Citation: FAN Zenghua, RONG Weibin, WANG Lefeng, SUN Lining. Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface[J]. ROBOT, 2015, 37(6): 648-654. CSTR: 32165.14.robot.2015.0648

疏水表面冷凝的可控毛细力微对象操作方法与实验

基金项目: 

机器人技术与系统国家重点实验室自主研究课题(SKLRS201301A01);长江学者和创新团队发展计划(IRT0915)

详细信息
    作者简介:

    范增华(1986-),男,博士生.研究领域:微操作方法与技术.

    荣伟彬(1972-),男,博士,教授,博士生导师.研究领域:纳米级微驱动技术,微/纳操作机器人技术.

    王乐锋(1980-),男,博士,副研究员,硕士生导师.研究领域:微操作机器人技术.

    通信作者:

    荣伟彬,rwb@hit.edu.cn

  • 中图分类号: TP24

Micromanipulation Method and Experiments of Controllable Capillary ForceBased on Condensation on Hydrophobic Surface

  • 摘要: 提出一种疏水表面冷凝的可控毛细力微操作方法,所研制的液滴操作手可实现操作液滴的动态控制,相应地调控液桥毛细力.建立疏水表面冷凝的单液滴生长模型,分析最小液滴半径、过冷度、饱和温度等参数的影响;通过拾取和释放理论模型,讨论微对象的拾取和释放进程;搭建微操作实验系统,实验分析疏水探针端面液滴冷凝及影响毛细力变化的因素.1mm×1mm×0.52mm微型硅片(重力12.1μN)和直径200μm、壁厚4μm薄壁微球(重力5.069nN)的操作实验验证了该方法的有效性.
    Abstract: On the basis of the presented micromanipulation method of condensation on hydrophobic surface, the volume of the water droplet on the hydrophobic tip surface can be dynamically varied which helps to obtain appropriate capillary lifting forces using the designed droplet micromanipulator. The single droplet growth model is established to analyze the influence of the minimum radius of droplet, the supercooling degree and the saturation temperature. Accordingly, the operational process of picking up and releasing are discussed by the theoretical models. With the assistance of a customized motion platform, the droplet formation on hydrophobic tip and the capillary lifting force generated during the manipulation process are experimentally characterized. Micromanipulation tasks of pick-and-place the micro silicon chips(1 mm×1 mm×0.52 mm, 12.1μN) and thin-wall microspheres with diameters of 200μm, wall thickness of 4μm(5.069 nN) are conducted to verify the feasibility of the presented method.
  • [1]

    Nah S K, Zhong Z W. A microgripper using piezoelectric actuation for micro-object manipulation[J]. Sensors and Actuators A:Physical, 2007, 133(1):218-224.  

    [2] 韩江义,游有鹏,王化明,等.夹钳式力反馈遥微操作系统的设计与试验[J].机器人,2010,32(2):184-189.

    Han J Y, You Y P, Wang H M, et al. Design and experiments of clamp type force-feedback tele-micromanipulation system[J]. Robot, 2010, 32(2):184-189.

    [3]

    Chen T, Sun L N, Chen L G, et al. A hybrid-type electrostatically driven microgripper with an integrated vacuum tool[J]. Sensors and Actuators A:Physical, 2010, 158(2):320-327.  

    [4]

    Chu J K, Zhang R, Chen Z P. A novel SU-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method[J]. Journal of Micromechanics and Microengineering, 2011, 21(5):No.054030.

    [5]

    Kim D H, Lee M G, Kim B, et al. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors:A numerical and experimental study[J]. Smart Materials and Structures, 2005, 14(6):1265-1272.  

    [6]

    Kohl M, Krevet B, Just E. SMA microgripper system[J]. Sensors and Actuators A:Physical, 2002, 97-98:646-652.

    [7]

    Ford S, Macias G, Lumia R. Single active finger IPMC microgripper[J]. Smart Materials and Structures, 2015, 24(2):No.025015.

    [8]

    Rong W B, Fan Z H, Wang L F, et al. A vacuum microgripping tool with integrated vibration releasing capability[J]. Review of Scientific Instruments, 2014, 85(8):No.085002.

    [9]

    Feddema J T, Xavier P, Brown R. Micro-assembly planning with van der Waals force[J]. Journal of Micromechatronics, 2001, 1(2):139-153.  

    [10]

    Al Amin A, Jagtiani A, Vasudev A, et al. Soft microgripping using ionic liquids for high temperature and vacuum applications[J]. Journal of Micromechanics and Microengineering, 2011, 21(12):No.125025.

    [11]

    Vasudev A, Zhe J. A capillary microgripper based on electrowetting[J]. Applied Physics Letters, 2008, 93(10):No.103503.

    [12]

    Fantoni G, Hansen H N, Santochi M. A new capillary gripper for mini and micro parts[J]. CIRP Annals- Manufacturing Technology, 2013, 62(1):17-20.  

    [13]

    Lambert P, Seigneur F, Koelemeijer S, et al. A case study of surface tension gripping:The watch bearing[J]. Journal of Micromechanics and Microengineering, 2006, 16(7):1267-1276.  

    [14]

    Fuchiwaki O, Kumagai K. Development of wet tweezers based on capillary force for complex-shaped and heterogeneous micro-assembly[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:1003-1009.

    [15] 张勤,甘裕明,黄维军.液滴微操作机械手的机理分析与实验[J].机器人,2014,36(4):430-435,445.

    Zhang Q, Gan Y M, Huang W J, et al. Mechanism analysis and experiments of liquid-drop micromanipulator[J]. Robot, 2014, 36(4):430-435,445.

    [16]

    Wang L F, Rong W B, Sun L N, et al. Capillary forces between submillimeter spheres and flat surfaces at constant liquid volumes[J]. Chinese Physics Letters, 2009, 26(12):198-201.

    [17]

    Wang L F, Régnier S. Capillary force between a probe tip with a power-law profile and a surface or a nanoparticle[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23(1):No.015001.

    [18]

    Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8):No.081502.

    [19]

    Lambert P. Capillary forces in microassembly:Modeling, simulation, experiments, and case study[M]. Berlin, Germany:Springer Science and Business Media, 2007.

    [20]

    Fan Z H, Wang L F, Rong W B, et al. Dropwise condensation on a hydrophobic probe-tip for manipulating micro-objects[J]. Applied Physics Letters, 2015, 106(8):No.084105.

    [21]

    Obata K J, Motokado T, Saito S, et al. A scheme for micro-manipulation based on capillary force[J]. Journal of Fluid Mechanics, 2004, 498:113-121.

计量
  • 文章访问数:  46
  • HTML全文浏览量:  819
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-06

目录

    /

    返回文章
    返回
    x 关闭 永久关闭