[1] |
Nah S K, Zhong Z W. A microgripper using piezoelectric actuation for micro-object manipulation[J]. Sensors and Actuators A:Physical, 2007, 133(1):218-224. 
|
[2] |
韩江义,游有鹏,王化明,等.夹钳式力反馈遥微操作系统的设计与试验[J].机器人,2010,32(2):184-189.
Han J Y, You Y P, Wang H M, et al. Design and experiments of clamp type force-feedback tele-micromanipulation system[J]. Robot, 2010, 32(2):184-189.
|
[3] |
Chen T, Sun L N, Chen L G, et al. A hybrid-type electrostatically driven microgripper with an integrated vacuum tool[J]. Sensors and Actuators A:Physical, 2010, 158(2):320-327. 
|
[4] |
Chu J K, Zhang R, Chen Z P. A novel SU-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method[J]. Journal of Micromechanics and Microengineering, 2011, 21(5):No.054030.
|
[5] |
Kim D H, Lee M G, Kim B, et al. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors:A numerical and experimental study[J]. Smart Materials and Structures, 2005, 14(6):1265-1272. 
|
[6] |
Kohl M, Krevet B, Just E. SMA microgripper system[J]. Sensors and Actuators A:Physical, 2002, 97-98:646-652.
|
[7] |
Ford S, Macias G, Lumia R. Single active finger IPMC microgripper[J]. Smart Materials and Structures, 2015, 24(2):No.025015.
|
[8] |
Rong W B, Fan Z H, Wang L F, et al. A vacuum microgripping tool with integrated vibration releasing capability[J]. Review of Scientific Instruments, 2014, 85(8):No.085002.
|
[9] |
Feddema J T, Xavier P, Brown R. Micro-assembly planning with van der Waals force[J]. Journal of Micromechatronics, 2001, 1(2):139-153. 
|
[10] |
Al Amin A, Jagtiani A, Vasudev A, et al. Soft microgripping using ionic liquids for high temperature and vacuum applications[J]. Journal of Micromechanics and Microengineering, 2011, 21(12):No.125025.
|
[11] |
Vasudev A, Zhe J. A capillary microgripper based on electrowetting[J]. Applied Physics Letters, 2008, 93(10):No.103503.
|
[12] |
Fantoni G, Hansen H N, Santochi M. A new capillary gripper for mini and micro parts[J]. CIRP Annals- Manufacturing Technology, 2013, 62(1):17-20. 
|
[13] |
Lambert P, Seigneur F, Koelemeijer S, et al. A case study of surface tension gripping:The watch bearing[J]. Journal of Micromechanics and Microengineering, 2006, 16(7):1267-1276. 
|
[14] |
Fuchiwaki O, Kumagai K. Development of wet tweezers based on capillary force for complex-shaped and heterogeneous micro-assembly[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:1003-1009.
|
[15] |
张勤,甘裕明,黄维军.液滴微操作机械手的机理分析与实验[J].机器人,2014,36(4):430-435,445.
Zhang Q, Gan Y M, Huang W J, et al. Mechanism analysis and experiments of liquid-drop micromanipulator[J]. Robot, 2014, 36(4):430-435,445.
|
[16] |
Wang L F, Rong W B, Sun L N, et al. Capillary forces between submillimeter spheres and flat surfaces at constant liquid volumes[J]. Chinese Physics Letters, 2009, 26(12):198-201.
|
[17] |
Wang L F, Régnier S. Capillary force between a probe tip with a power-law profile and a surface or a nanoparticle[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23(1):No.015001.
|
[18] |
Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8):No.081502.
|
[19] |
Lambert P. Capillary forces in microassembly:Modeling, simulation, experiments, and case study[M]. Berlin, Germany:Springer Science and Business Media, 2007.
|
[20] |
Fan Z H, Wang L F, Rong W B, et al. Dropwise condensation on a hydrophobic probe-tip for manipulating micro-objects[J]. Applied Physics Letters, 2015, 106(8):No.084105.
|
[21] |
Obata K J, Motokado T, Saito S, et al. A scheme for micro-manipulation based on capillary force[J]. Journal of Fluid Mechanics, 2004, 498:113-121.
|