基于解耦线性化的变刚度关节动态刚度辨识

尹鹏, 李满天, 查富生, 王鹏飞, 孙立宁

尹鹏, 李满天, 查富生, 王鹏飞, 孙立宁. 基于解耦线性化的变刚度关节动态刚度辨识[J]. 机器人, 2015, 37(5): 522-528. DOI: 10.13973/j.cnki.robot.2015.0522
引用本文: 尹鹏, 李满天, 查富生, 王鹏飞, 孙立宁. 基于解耦线性化的变刚度关节动态刚度辨识[J]. 机器人, 2015, 37(5): 522-528. DOI: 10.13973/j.cnki.robot.2015.0522
YIN Peng, LI Mantian, ZHA Fusheng, WANG Pengfei, SUN Lining. Dynamic Stiffness Identification of Adjustable Stiffness Joint Based on Decoupling and Linearization[J]. ROBOT, 2015, 37(5): 522-528. DOI: 10.13973/j.cnki.robot.2015.0522
Citation: YIN Peng, LI Mantian, ZHA Fusheng, WANG Pengfei, SUN Lining. Dynamic Stiffness Identification of Adjustable Stiffness Joint Based on Decoupling and Linearization[J]. ROBOT, 2015, 37(5): 522-528. DOI: 10.13973/j.cnki.robot.2015.0522
尹鹏, 李满天, 查富生, 王鹏飞, 孙立宁. 基于解耦线性化的变刚度关节动态刚度辨识[J]. 机器人, 2015, 37(5): 522-528. CSTR: 32165.14.robot.2015.0522
引用本文: 尹鹏, 李满天, 查富生, 王鹏飞, 孙立宁. 基于解耦线性化的变刚度关节动态刚度辨识[J]. 机器人, 2015, 37(5): 522-528. CSTR: 32165.14.robot.2015.0522
YIN Peng, LI Mantian, ZHA Fusheng, WANG Pengfei, SUN Lining. Dynamic Stiffness Identification of Adjustable Stiffness Joint Based on Decoupling and Linearization[J]. ROBOT, 2015, 37(5): 522-528. CSTR: 32165.14.robot.2015.0522
Citation: YIN Peng, LI Mantian, ZHA Fusheng, WANG Pengfei, SUN Lining. Dynamic Stiffness Identification of Adjustable Stiffness Joint Based on Decoupling and Linearization[J]. ROBOT, 2015, 37(5): 522-528. CSTR: 32165.14.robot.2015.0522

基于解耦线性化的变刚度关节动态刚度辨识

基金项目: 

国家自然科学基金资助项目(61375097,61175107)

详细信息
    作者简介:

    尹鹏(1985-),男,博士生.研究领域:仿生机器人,仿生控制.

    李满天(1974-),男,博士,副教授.研究领域:仿生机器人,特种机器人等.

    查富生(1974-),男,博士,副教授,研究领域:仿生机器人与仿生控制等.

    通信作者:

    查富生,zfsh751228@163.com

  • 中图分类号: TP242.6

Dynamic Stiffness Identification of Adjustable Stiffness Joint Based on Decoupling and Linearization

  • 摘要: 为了能够利用变刚度关节实现对机器人动态特性的调整,需要对关节的动态刚度进行有效的辨识和控制.本文首先根据机器人变刚度关节的结构特点建立了简化模型,并对其刚度输出特性表达做出假设;然后对模型中的力矩相关参数进行解耦,消除了关节刚度调节参数对力矩的影响,获取与刚度辨识相关的归一化力矩;利用泰勒展开对归一化力矩进行线性化处理,采用卡尔曼滤波器进行了系数优化,并进一步实现了对关节动态刚度的辨识.仿真中该刚度在线辨识方法可以将辨识误差控制在 ±2% 以内,在实现动态刚度辨识的基础上研究了基于前馈的刚度闭环控制方法,通过仿真实验验证了该方法对于机器人关节刚度闭环控制是有效的.
    Abstract: In order to take advantage of adjustable stiffness joint to adjust robot's dynamic feature, it is necessary to effectively identify and control the dynamic stiffness of the joint.Firstly, a simplified model is derived based on the structure features of robotic adjustable stiffness joint, and the assumption of stiffness output form is made.Then the torque related parameters in the model are decoupled, to eliminate the effect of adjusting parameter of joint stiffness on the torque, and thus the unified torque expression for stiffness identification is acquired.Linearization of the unified torque expression is then carried out by utilizing Tailor expansion, and Kalman filter is applied to optimizing the factors of the expansion.Based on this, the joint dynamic stiffness identification is achieved.It is proved the identification error is controlled within ± 2% by the dynamic stiffness online identification method in simulation.Based on the result of dynamic stiffness identification, feedforward based joint stiffness closed-loop control method is then studied.Simulation experiments show that the method is effective for robotic joint stiffness closed-loop control.
  • [1]

    van Ham R.Compliant actuation for biologically inspired bipedal walking robots[D].Brussel, Blegium: Vrije Universiteit, 2006.

    [2]

    Groothuis S S, Rusticelli G, Zucchelli A, et al.The variable stiffness actuator vsaUT-II: Mechanical design, modeling, and identification[J].IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 589-597.  

    [3]

    Jafari A, Tsagarakis N G, Vanderborght B, et al.A novel actuator with adjustable stiffness (AwAS) [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, USA: IEEE, 2010: 4201-4206.

    [4]

    Pratt G A, Williamson M M.Series elastic actuators[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, USA: IEEE, 1995: 399-406.

    [5]

    Flacco F, de Luca A.Residual-based stiffness estimation in robots with flexible transmissions[C]//IEEE International Conference on Robotics and Automation.Piscataway, USA: IEEE, 2011: 5541-5547.

    [6]

    Grioli G, Bicchi A.A real-time parametric stiffness observer for VSA devices[C]//IEEE International Conference on Robotics and Automation.Piscataway, USA: IEEE, 2011: 5535-5540.

    [7]

    Serio A, Grioli G, Sardellitti I, et al.A decoupled impedance observer for a variable stiffness robot[C]//IEEE International Conference on Robotics and Automation.Piscataway, USA: IEEE, 2011: 5548-5553.

    [8]

    de Luca A, Flacco A, Bicchi A, et al.Nonlinear decoupled motion-stiffness control and collision detection/reaction for the VSA-II variable stiffness device[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, USA: IEEE, 2009: 5487-5494.

    [9] 陈恩伟,陆益民,刘正士.Taylor展开的线性时变系统参数辨识及误差分析[J].机械工程学报,2011,47(7):90-96.

    Chen E W, Lu Y M, Liu Z S.Parameter identification and error analysis of linear time varying system based on Taylor expansion[J].Journal of Mechanical Engineering, 2011, 47(7): 90-96.

    [10]

    Gomez J M.Kalman filtering[M]//van Ham R.Compliant actuation for biologically inspired bipedal walking robots.Hauppauge, USA: Nova Science, 2011.

    [11]

    Schoukens J, Pintelon R, Rolain Y.Mastering system identification in 100 exercises[M].New York, USA: John Wiley & Sons, 2012.

    [12] 丁锋,杨慧中,纪志成.时变系统辨识方法及其收敛定理[J].江南大学学报:自然科学版,2006,5(1):115-126.

    Ding F, Yang H Z, Ji Z C.Time varying system identification methods and convergence theories[J].Journal of Southern Yangtze University: Natural Science Edition, 2006, 5(1): 115-126.

    [13] 胡寿松.自动控制原理[M].5版.北京:科学出版社,2007:471-472.

    Hu S S.The principle of automatic control[M].5th ed.Beijing: Science Press, 2007: 471-472.

计量
  • 文章访问数:  83
  • HTML全文浏览量:  882
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-05

目录

    /

    返回文章
    返回
    x 关闭 永久关闭