3-RPS并联机构弹性动力学建模方法

落海伟, 张俊, 王辉, 黄田

落海伟, 张俊, 王辉, 黄田. 3-RPS并联机构弹性动力学建模方法[J]. 机器人, 2014, 36(6): 737-743,750. DOI: 10.13973/j.cnki.robot.2014.0737
引用本文: 落海伟, 张俊, 王辉, 黄田. 3-RPS并联机构弹性动力学建模方法[J]. 机器人, 2014, 36(6): 737-743,750. DOI: 10.13973/j.cnki.robot.2014.0737
LUO Haiwei, ZHANG Jun, WANG Hui, HUANG Tian. An Elastodynamic Modeling Method for a 3-RPS Parallel Kinematic Machine[J]. ROBOT, 2014, 36(6): 737-743,750. DOI: 10.13973/j.cnki.robot.2014.0737
Citation: LUO Haiwei, ZHANG Jun, WANG Hui, HUANG Tian. An Elastodynamic Modeling Method for a 3-RPS Parallel Kinematic Machine[J]. ROBOT, 2014, 36(6): 737-743,750. DOI: 10.13973/j.cnki.robot.2014.0737
落海伟, 张俊, 王辉, 黄田. 3-RPS并联机构弹性动力学建模方法[J]. 机器人, 2014, 36(6): 737-743,750. CSTR: 32165.14.robot.2014.0737
引用本文: 落海伟, 张俊, 王辉, 黄田. 3-RPS并联机构弹性动力学建模方法[J]. 机器人, 2014, 36(6): 737-743,750. CSTR: 32165.14.robot.2014.0737
LUO Haiwei, ZHANG Jun, WANG Hui, HUANG Tian. An Elastodynamic Modeling Method for a 3-RPS Parallel Kinematic Machine[J]. ROBOT, 2014, 36(6): 737-743,750. CSTR: 32165.14.robot.2014.0737
Citation: LUO Haiwei, ZHANG Jun, WANG Hui, HUANG Tian. An Elastodynamic Modeling Method for a 3-RPS Parallel Kinematic Machine[J]. ROBOT, 2014, 36(6): 737-743,750. CSTR: 32165.14.robot.2014.0737

3-RPS并联机构弹性动力学建模方法

基金项目: 

国家自然科学基金重点项目(51135008);教育部高校博士点基金资助项目(20110032130006);国家863计划资助项目(2012AA040702)

详细信息
    作者简介:

    落海伟(1985-),男,博士.研究领域:机械动力学.张俊(1981-),男,博士,副教授.研究领域:齿轮动力学,空间机构学,机床动力学.王辉(1976-),女,博士,副教授.研究领域:机械制造及其自动化,机器人控制.

    通信作者:

    王辉,wanghui@tju.edu.cn

  • 中图分类号: TH113.1

An Elastodynamic Modeling Method for a 3-RPS Parallel Kinematic Machine

  • 摘要: 运用子结构综合和模态缩聚技术,提出了一种全柔性3自由度并联动力头(3-RPS)的弹性动力学建模方法.在建模过程中,将机构划分为动平台子结构和3条RPS伸缩支链子结构.模型中考虑了所有铰链和支链柔度对整机动态特性的影响.将球铰和转动副处理为具有等效刚度的虚拟弹簧;通过有限元软件和模态缩聚技术对伸缩支链进行处理,进而建立支链的弹性动力学方程;通过引入变形协调条件,对系统整体刚度矩阵进行组装, 建立了3-RPS并联动力头的整体动力学方程.研究结果表明,整机的各阶固有频率随着机构位姿的变化而变化,并且呈三对称形式分布.通过模态实验验证了该方法所得的固有频率和振型.
    Abstract: An elastodynamic model for a fully flexible 3-RPS parallel kinematic machine (PKM) is proposed based on the component mode synthesis (CMS) and modal reduction technology. In the modeling process, the whole system is divided into moving platform subsystem and three retractable RPS limb subsystems, in which all joint and limb compliances are included. In the elastodynamic model, the sphere joint and the revolute joint are treated as lumped virtual springs with equal stiffness, and the elastodynamic equations of RPS limbs are developed by the modal reduction techniques with the aid of the finite element software. By introducing the compatibility conditions, a global dynamic equation of the system is then proposed. The conclusion reveals that the natural frequencies of different orders vary with the changes of the configuration, and are three-symmetrically distributed. The natural frequencies and vibration modes obtained by the proposed method are further validated by the modal experimental results.
  • [1]

    Neumann K E. Tricept application[C]//3rd Chemnitz Parallel Kinematics Seminar. Zwickau, Germany: 2002: 547-551.

    [2]

    Caccavale F, Siciliano B, Villani L. The Tricept robot: Dynamics and impedance control[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(2): 263-268.  

    [3]

    Hennes N, Staimer D. Application of PKM in aerospace manufacturing-high performance machining centers ECOSPEED, ECOSPEED-F and ECOLINER[C]//Proceedings of the 4th Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany: 2004: 557-568.

    [4]

    Li Y G, Liu H T, Zhao X M, et al. Design of a 3-DOF PKM module for large structural component machining[J]. Mecha- nism and Machine Theory, 2010, 45(6): 941-954.  

    [5]

    Huang T, Liu H T, Chetwynd D G. Generalized Jacobian analysis of lower mobility manipulators[J]. Mechanism and Machine Theory, 2011, 46(6): 831-844.  

    [6]

    Liu H T, Huang T, Chetwynd D G. An approach for acceleration analysis of lower mobility parallel manipulators[J]. Journal of Mechanisms and Robotics, 2011, 3(1).

    [7]

    Quintana G, Ciurana J. Chatter in machining processes: A review[J]. International Journal of Machine Tools and Manufacture, 2011, 51(5): 363-376.  

    [8]

    Law M, Ihlenfeldt S, Wabner M, et al. Position-dependent dynamics and stability of serial-parallel kinematic machines[J]. CIRP Annals——Manufacturing Technology, 2013, 62(1): 375-378.

    [9]

    Piras G, Cleghorn W L, Mills J K. Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links[J]. Mechanism and Machine Theory, 2005, 40(7): 849-862.  

    [10]

    Zhang X P, Mills J K, Cleghorn W L. Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links[J]. Journal of Intelligent and Robotic Systems, 2007, 50(4): 323-340.  

    [11]

    Zhao Y J, Gao F, Dong X J, et al. Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(5): 918-928.  

    [12]

    Mukherjee P, Dasgupta B, Mallik A K. Dynamic stability index and vibration analysis of a flexible Stewart platform[J]. Journal of Sound and Vibration, 2007, 307(3-5): 495-512.  

    [13]

    Pedrammehr S, Mahboubkhah M, Khani N. A study on vibration of Stewart platform-based machine tool table[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(5-8): 991-1017.

    [14]

    Heirman G H K, DesmetW. Interface reduction of flexible bodies for efficient modeling of body flexibility in multibody dynamics[J]. Multibody System Dynamics, 2010, 24(2): 219-234.  

    [15]

    Law M, Phani A S, Altintas Y. Position-dependent multibody dynamic modeling of machine tools based on improved reduced order models[J]. Journal of Manufacturing Science and Engineering, 2013, 135(2): No.021008.

    [16]

    INA. http://www.ina.de.

    [17]

    THK Global. http://www.thk.com.

    [18]

    Ewins D J. Modal testing: Theory, practice and application[M]. 2nd ed. Baldock, UK: Research Studies Press, 2000.

    [19]

    Zhang J, Luo H W, Huang T. Experimental modal analysis for a 3-DOF PKM module[C]//Advances in Reconfigurable Mechanisms and Robots. Berlin, Germany: Springer, 2012: 371-377.

计量
  • 文章访问数:  48
  • HTML全文浏览量:  1538
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-10

目录

    /

    返回文章
    返回
    x 关闭 永久关闭