全海深ARV浮力配平计算方法

陆洋, 唐元贵, 王健, 陈聪, 闫兴亚

陆洋, 唐元贵, 王健, 陈聪, 闫兴亚. 全海深ARV浮力配平计算方法[J]. 机器人, 2021, 43(1): 74-80. DOI: 10.13973/j.cnki.robot.200037
引用本文: 陆洋, 唐元贵, 王健, 陈聪, 闫兴亚. 全海深ARV浮力配平计算方法[J]. 机器人, 2021, 43(1): 74-80. DOI: 10.13973/j.cnki.robot.200037
LU Yang, TANG Yuangui, WANG Jian, CHEN Cong, YAN Xingya. A Calculation Method of ARV Buoyancy Trim at Full-Ocean Depth[J]. ROBOT, 2021, 43(1): 74-80. DOI: 10.13973/j.cnki.robot.200037
Citation: LU Yang, TANG Yuangui, WANG Jian, CHEN Cong, YAN Xingya. A Calculation Method of ARV Buoyancy Trim at Full-Ocean Depth[J]. ROBOT, 2021, 43(1): 74-80. DOI: 10.13973/j.cnki.robot.200037
陆洋, 唐元贵, 王健, 陈聪, 闫兴亚. 全海深ARV浮力配平计算方法[J]. 机器人, 2021, 43(1): 74-80. CSTR: 32165.14.robot.200037
引用本文: 陆洋, 唐元贵, 王健, 陈聪, 闫兴亚. 全海深ARV浮力配平计算方法[J]. 机器人, 2021, 43(1): 74-80. CSTR: 32165.14.robot.200037
LU Yang, TANG Yuangui, WANG Jian, CHEN Cong, YAN Xingya. A Calculation Method of ARV Buoyancy Trim at Full-Ocean Depth[J]. ROBOT, 2021, 43(1): 74-80. CSTR: 32165.14.robot.200037
Citation: LU Yang, TANG Yuangui, WANG Jian, CHEN Cong, YAN Xingya. A Calculation Method of ARV Buoyancy Trim at Full-Ocean Depth[J]. ROBOT, 2021, 43(1): 74-80. CSTR: 32165.14.robot.200037

全海深ARV浮力配平计算方法

基金项目: 

国家重点研发计划(2016YFC0300800).

详细信息
    作者简介:

    陆洋(1989-),男,硕士,助理研究员.研究领域:水下机器人载体设计,ARV结构关键技术.

    唐元贵(1980-),男,博士,研究员.研究领域:自主遥控水下机器人技术,全海深水下机器人技术.

    王健(1987-),男,硕士,助理研究员.研究领域:水下机器人控制.

    通信作者:

    唐元贵,tyg@sia.cn

  • 中图分类号: TP242

A Calculation Method of ARV Buoyancy Trim at Full-Ocean Depth

  • 摘要: 全海深ARV (自主遥控水下机器人)下潜至马里亚纳海沟,机器人工作环境温度降低、海水压力增大,会引起载体结构、补偿油体积变化.根据深渊海水密度、重力加速度和机器人体积的变化,计算得到机器人浮力状态的变化量,从而计算机器人浮力配平.通过公式推导并结合“海斗号”ARV深潜数据和补偿油压缩实验数据,得到全海深ARV浮力配平计算方法.其主要包括海水密度测算、马里亚纳海沟重力加速度测算、机器人结构和补偿油排水体积变化测算.计算得出在11 000 m深度实现浮力配平所需的压载为8.9 kg.完成“海斗号”ARV浮力配平,保障机器人深渊工作环境浮力与重力匹配,成功进行了多次马里亚纳海沟万米深潜.本文方法为全海深水下机器人浮力配平提供了理论计算依据.
    Abstract: When a full-ocean depth ARV (autonomous and remotely-operated vehicle) dives to Mariana Trench, the vehicle structure and the volume of compensation oil will change due to the pressure increase and temperature fall of seawater in the working environment. Taking the abyssal seawater density, gravity acceleration and robot volume change into consideration, the change amount of the robot buoyancy state is calculated, so as to calculate the robot buoyancy trim. A calculation method of buoyancy trim for the full-ocean depth ARV is obtained through formula derivation, combining with the experimental data of Hadal ARV and the compression experiment data of compensation oil. It mainly includes seawater density calculation, Mariana trench gravity acceleration calculation, the volume change measurement of the robot and compensation oil. The ballast for buoyancy trim at 11 000 m depth is calculated to be 8.9 kg. The buoyancy trim of Hadal ARV ensures that the buoyancy and gravity match suitably in abyssal working environment. Several sea trials at Mariana Trench are conducted. The proposed method provides a theoretical calculation basis for buoyancy trim of the full-ocean depth underwater robots.
  • [1]

    Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches:The ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3):190-197.

    [2]

    Anonymous. NASA study finds Earth's ocean abyss has not warmed[J]. Ocean News & Technology, 2014(11):23.

    [3]

    Bowen A D, Yoerger D R, Taylor C, et al. The Nereus hybrid underwater robotic vehicle[J]. Underwater Technology, 2009, 28(3):79-89.

    [4]

    Wang B, Wu C, Ge T. Control system of a novel underwater vehicle for global ocean science to the deepest ocean[C]//Chinese Control Conference. Piscataway, USA:IEEE, 2013:72687272.

    [5]

    Mikagawa T, Aoki M. An outline of R/V Kairei and recent activity of the multichannel seismic reflection survey system (MCS) and ROV Kaiko[J]. Journal of Marine Science and Technology, 2001, 6(1):42-49.

    [6] 唐元贵,王健,陆洋,等. "海斗号"全海深自主遥控水下机器人参数化设计方法与试验研究[J].机器人, 2019, 41(6):697-705.

    Tang Y G, Wang J, Lu Y, et al. Parametric design method and experimental research on Haidou full-depth ocean autonomous and remotely-operated vehicle[J]. Robot, 2019, 41(6):697-705.

    [7] 刘鑫宇,李一平,封锡盛. 万米级水下机器人浮力实时测量方法[J].机器人, 2018, 40(2):216-221.

    Liu X Y, Li Y P, Feng X S. Real-time measurement method of buoyancy of a full-ocean-depth underwater robot[J]. Robot, 2018, 40(2):216-221.

    [8]

    Zhou H K, Yang F, Wang W H, et al. Research and application of an underwater detection robot with three level control mode of ROV/ARV/AUV[C]//3rd International Conference on Information Technology and Industrial Automation. Lancaster, USA:DEStech Publications, 2018:604-609.

    [9] 姜言清,李晔,王友康,等. 全海深水下机器人的重力和浮力计算[J].哈尔滨工程大学学报, 2020, 41(4):481486. Jiang Y Q, Li Y, Wang Y K, et al. Gravity and buoyancy analysis of full ocean depth autonomous underwater vehicle[J]. Journal of Harbin Engineering University, 2020, 41(4):481-486.
    [10] 张昆. 新的重力加速度公式研究[J].地球物理学进展, 2011, 26(3):824-828.

    Zhang K. New gravity acceleration formula research[J]. Progress in Geophysics, 2011, 26(3):824-828.

    [11] 张胜军. 利用多源卫星测高资料确定海洋重力异常的研究[D].武汉:武汉大学, 2016. Zhang S J. Research on determination of marine gravity anomalies from multi-satellite altimeter data[D]. Wuhan:Wuhan University, 2016.
    [12] 张绮,王会娟,郭春梅,等. 电气绝缘油热膨胀系数的研究[J].石油炼制与化工, 2012, 43(10):55-59.

    Zhang Q, Wang H J, Guo C M, et al. Research on the thermal expansion coefficient of electrical insulating oil[J]. Petroleum Processing and Petrochemicals, 2012, 43(10):55-59.

    [13]

    ASTM International. Standard specification for mineral insulating oil used in electrical apparatus[S]. West Conshohockon, USA:ASTM International, 2009.

  • 期刊类型引用(4)

    1. 周吉祥,刘慧敏,陆凯,单瑞,杨源. 深海ARV在海洋资源调查中的应用及展望. 海洋地质前沿. 2024(02): 93-102 . 百度学术
    2. 卜林海,唐元贵,郑鹏. 海斗号全海深水下机器人体积弹性模量建模方法. 舰船科学技术. 2024(20): 87-93 . 百度学术
    3. 田启岩,李硕,杨丽英,邵士亮,张弼,高岳,帅梅. 北京2022年冬奥会和冬残奥会火炬传递机器人. 机器人. 2022(05): 513-521 . 本站查看
    4. 丁宁宁,唐元贵,姜志斌. 基于隐式离散化超螺旋算法的水下机器人姿态控制. 舰船科学技术. 2021(21): 83-89 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  95
  • HTML全文浏览量:  277
  • PDF下载量:  193
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-02-13

目录

    /

    返回文章
    返回
    x 关闭 永久关闭