电动并联六轮足机器人的运动驱动与多模态控制方法

陈志华, 汪首坤, 王军政, 徐康, 王修文, 刘道和, 雷涛, 司金戈

陈志华, 汪首坤, 王军政, 徐康, 王修文, 刘道和, 雷涛, 司金戈. 电动并联六轮足机器人的运动驱动与多模态控制方法[J]. 机器人, 2020, 42(5): 534-549. DOI: 10.13973/j.cnki.robot.190524
引用本文: 陈志华, 汪首坤, 王军政, 徐康, 王修文, 刘道和, 雷涛, 司金戈. 电动并联六轮足机器人的运动驱动与多模态控制方法[J]. 机器人, 2020, 42(5): 534-549. DOI: 10.13973/j.cnki.robot.190524
CHEN Zhihua, WANG Shoukun, WANG Junzheng, XU Kang, WANG Xiuwen, LIU Daohe, LEI Tao, SI Jinge. Motion Drive and Multi-mode Control Method of an Electric Parallel Six Wheel-Legged Robot[J]. ROBOT, 2020, 42(5): 534-549. DOI: 10.13973/j.cnki.robot.190524
Citation: CHEN Zhihua, WANG Shoukun, WANG Junzheng, XU Kang, WANG Xiuwen, LIU Daohe, LEI Tao, SI Jinge. Motion Drive and Multi-mode Control Method of an Electric Parallel Six Wheel-Legged Robot[J]. ROBOT, 2020, 42(5): 534-549. DOI: 10.13973/j.cnki.robot.190524
陈志华, 汪首坤, 王军政, 徐康, 王修文, 刘道和, 雷涛, 司金戈. 电动并联六轮足机器人的运动驱动与多模态控制方法[J]. 机器人, 2020, 42(5): 534-549. CSTR: 32165.14.robot.190524
引用本文: 陈志华, 汪首坤, 王军政, 徐康, 王修文, 刘道和, 雷涛, 司金戈. 电动并联六轮足机器人的运动驱动与多模态控制方法[J]. 机器人, 2020, 42(5): 534-549. CSTR: 32165.14.robot.190524
CHEN Zhihua, WANG Shoukun, WANG Junzheng, XU Kang, WANG Xiuwen, LIU Daohe, LEI Tao, SI Jinge. Motion Drive and Multi-mode Control Method of an Electric Parallel Six Wheel-Legged Robot[J]. ROBOT, 2020, 42(5): 534-549. CSTR: 32165.14.robot.190524
Citation: CHEN Zhihua, WANG Shoukun, WANG Junzheng, XU Kang, WANG Xiuwen, LIU Daohe, LEI Tao, SI Jinge. Motion Drive and Multi-mode Control Method of an Electric Parallel Six Wheel-Legged Robot[J]. ROBOT, 2020, 42(5): 534-549. CSTR: 32165.14.robot.190524

电动并联六轮足机器人的运动驱动与多模态控制方法

基金项目: 

国家自然科学基金(61773060)

详细信息
    作者简介:

    陈志华(1991-),男,博士生.研究领域:机器人步态规划与运动控制.

    汪首坤(1977-),男,博士,副教授.研究领域:运动驱动与控制,电液伺服系统静动态性能测试.

    王军政(1964-),男,博士,教授.研究领域:伺服运动驱动与控制,机器人控制,负载模拟与静动态试验.

    通信作者:

    汪首坤,bitwsk@bit.edu.cn

  • 中图分类号: TP242

Motion Drive and Multi-mode Control Method of an Electric Parallel Six Wheel-Legged Robot

  • 摘要: 提出一种并联六轮足移动机器人.该机器人设有多模式Stewart型腿结构,其负载能力大,集成了轮式运动和足式运动的优点,可实现足式、轮式、轮足复合式运动.首先,阐述了机器人设计思路,对电动并联六轮足机器人的硬件系统和控制系统进行设计.其次,针对足式运动模式,设计了一套完整的足式“三角”步态和稳定行走算法,该算法可降低足端与地面之间的垂直方向冲击,防止足式运动拖腿或打滑;针对轮式运动模式,设计并介绍了6轮协同控制和轮式协同转向原理;针对轮足复合式运动模式,介绍了变高度、变支撑面、变轮距、主动隔振控制原理,重点分析了主动隔振控制和变轮距控制,可实现主动隔振及姿态平稳控制,提高了机器人在崎岖颠簸地形下的轮足复合式运动的稳定性.最后,对电动并联六轮足机器人的足式、轮式、轮足复合式运动模式进行实验,实验结果验证了本文提出的并联六轮足移动机器人设计的可行性和各运动模式下驱动与控制算法的有效性.
    Abstract: A parallel six wheel-legged mobile robot is proposed. The robot adopts a multi-mode Stewart leg structure with large load capacity, which integrates the advantages of wheeled motion and legged motion, and can realize legged, wheeled and wheel-legged compound motions. Firstly, the design idea of the robot is described, and the hardware system and control system of the electric parallel six wheel-legged robot are designed. Secondly, a complete set of legged "triangle" gaits and a stable walking algorithm are designed for the legged motion mode, which can reduce the vertical impact between the foot and the ground, and prevent foot motion from dragging or skidding. For the wheeled motion mode, the principles of cooperative control and steering of 6 wheels are designed and introduced. For the wheel-legged compound motion mode, the principles of variable height, variable support surface, variable wheel track and active vibration isolation controls are introduced with the analysis emphasis on active vibration isolation control and variable wheel track control, which can realize active vibration isolation and attitude stabilization control, and improve the stability of the wheel-legged compound motion of the robot on rough terrain. Finally, the legged, wheeled and wheel-legged compound motion modes of the electric parallel six wheel-legged robot are tested. The experimental results verify the feasibility of the design of the parallel six wheel-legged mobile robot and the effectiveness of the driving and control algorithm of each motion mode.
  • [1]

    Hong D K, Hwang W, Lee J Y. Design, analysis, and experimental validation of a permanent magnet synchronous motor for articulated robot applications[J]. IEEE Transactions on Magnetics, 2018, 54(3). DOI: 10.1109/TMAG.2017.2752080.

    [2] 柳倩,桂建军,杨小薇.工业机器人传感控制技术研究现状及发展态势——基于专利文献计量分析视角[J].机器人,2016,38(5):612-620.

    Liu Q, Gui J J, Yang X W. Research status and development trends for sensing and control technologies of industrial robot from the viewpoint of patent analysis[J]. Robot, 2016, 38(5):612-620.

    [3] 王天然.机器人技术的发展[J].机器人,2017,39(4):385-386.

    Wang T R. Development of robotics[J]. Robot, 2017, 39(4):385-386.

    [4]

    Sorour M, Cherubini A, Khelloufi A, et al. Complementary-route based ICR control for steerable wheeled mobile robots[J]. Robotics and Autonomous Systems, 2019, 118:131-143.

    [5]

    Chen J, Liang Z C, Zhu Y H, et al. Improving kinematic flexibility and walking performance of a six-legged robot by rationally designing leg morphology[J]. Journal of Bionic Engineering, 2019, 16(4):608-620.

    [6]

    Fang L, Gao F. Type design and behavior control for six legged robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31(3). DOI: 10.1186/s10033-018-0259-9.

    [7] 刘彦伟,刘三娃,梅涛,等.一种仿生爪刺式履带爬壁机器人设计与分析[J].机器人,2019,41(4):526-533.

    Liu Y W, Liu S W, Mei T, et al. Design and analysis of a bio-inspired tracked wall-climbing robot with spines[J]. Robot, 2019, 41(4):526-533.

    [8] 王海涛,彭熙凤,林本末.软体机器人研究进展[J].华南理工大学学报(自然科学版),2020,48(2):94-106.

    Wang H T, Peng X F, Lin B M. Research development of soft robots[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2):94-106.

    [9] 周坤,李川,李超,等.面向未知复杂地形的四足机器人运动规划方法[J].机械工程学报,2020,56(2):210-219.

    Zhou K, Li C, Li C, et al. Motion planning method for quadruped robots walking on unknown rough terrain[J]. Journal of Mechanical Engineering, 2020, 56(2):210-219.

    [10] 李满宏,张明路,张建华,等.六足机器人关键技术综述[J].机械设计,2015,32(10):1-8.

    Li M H, Zhang M L, Zhang J H, et al. Review on key technology of the hexapod robot[J]. Journal of Machine Design, 2015, 32(10):1-8.

    [11] 王冠宇,丁亮,高海波,等.增强爬坡能力的六足机器人分步二次规划足力分配算法及试验验证[J].机械工程学报,2019,55(21):11-20.

    Wang G Y, Ding L, Gao H B, et al. Decomposed QP CFDA for hexapod robots to enhance the slope-climbing ability and experimental validation[J]. Journal of Mechanical Engineering, 2019, 55(21):11-20.

    [12] 陈杰.六足机器人崎岖地形步行运动规划与控制策略研究[D].哈尔滨:哈尔滨工业大学,2017.Chen J. Research on motion planning and control strategy of hexapod robot walking in rugged terrain[J]. Harbin:Harbin Institute of Technology, 2017.
    [13]

    Xu K, Wang S K, Yue B K, et al. Obstacle-negotiation performance on challenging terrain for a parallel leg-wheeled robot[J]. Journal of Mechanical Science and Technology, 2020, 34(1):377-386.

    [14]

    de Viragh Y, Bjelonic M, Bellicoso C D, et al. Trajectory optimization for wheeled-legged quadrupedal robots using linearized ZMP constraints[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1633-1640.

    [15]

    Halme A, Luksch T, Ylönen S. Biomimicing motion control of the WorkPartner robot[J]. Industrial Robot, 2004, 31(2):209-217.

    [16]

    Estremera J, Cobano J A, Gonzalez de Santos P. Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones:An application to humanitarian demining[J]. Robotics and Autonomous Systems, 2010, 58(5):700-711.

    [17]

    Grand C, Benamar F, Plumet F. Motion kinematics analysis of wheeled-legged rover over 3D surface with posture adaptation[J]. Mechanism and Machine Theory, 2010, 45(3):477-495.

    [18]

    Wang P F, Huang B, Sun L N. Walking research on multi-motion mode quadruped bionic robot based on moving ZMP[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2005:1935-1940.

    [19] 郭丽峰,陈恳,赵旦谱.一种轮腿式变结构移动机器人研究[J].制造业自动化,2009,31(10):1-6.

    Guo L F, Chen K, Zhao D P. Study on a wheel-legged hybrid mobile robot[J]. Manufacturing Automation, 2009, 31(10):1-6.

    [20] 郝仁剑,王军政,史大威,等.基于速度矢量的四足机器人间歇步态规划方法[J].机器人,2016,38(5):540-549.

    Hao R J, Wang J Z, Shi D W, et al. Intermittent gait planning method of quadruped robot based on velocity vector[J]. Robot, 2016, 38(5):540-549.

    [21]

    Chen Z H, Wang S K, Xu K, et al. Research on high precision control of joint position servo system for hydraulic quadruped robot[C]//38th Chinese Control Conference. Piscataway, USA:IEEE, 2019:755-760.

    [22]

    Karssen J G D, Haberland M, Wisse M, et al. The effects of swing-leg retraction on running performance:Analysis, simulation, and experiment[J]. Robotica, 2015, 33(10):2137-2155.

    [23]

    He Y D, Wang J Z, Ke X F, et al. Stable walking for legged robots[J]. Journal of Mechanical Engineering, 2016, 52(21):1-7.

  • 期刊类型引用(15)

    1. 杨洪涛,单翔飞,沈梅,刘月琪. 对称悬架混联轮腿机器人结构设计与参数优化. 机械设计. 2024(03): 65-74 . 百度学术
    2. 李艳,刘正矛. 柔性关节机械手模态分析的数值解析方法研究. 机械设计与制造. 2024(08): 318-325 . 百度学术
    3. 刘春娟. 基于降阶约束的自适应滑模算法对运动竞赛机器人局部控制的优化研究. 自动化与仪器仪表. 2024(09): 234-238 . 百度学术
    4. 田时玮,李易燃,潘文豪. 一种“轮-足-手”多模式复合移动机器人. 工业控制计算机. 2024(11): 105-106 . 百度学术
    5. 王小涛,张震,崔宇新,王卫军,韩亮亮,张崇峰. 月面六足机器人机构设计与行走控制方法综述. 载人航天. 2023(02): 264-275 . 百度学术
    6. 张春燕,江毅文,杨杰,蒋新星. 可变向多地形移动全R副并联机器人. 工程设计学报. 2023(02): 189-199 . 百度学术
    7. 孙筠,杨凯. 面向复杂曲面的激光切割机器人移动速度平滑控制. 激光杂志. 2023(06): 245-249 . 百度学术
    8. 杨政,马春燕,窦银科,王煜尘. 步履式全地形六足机器人. 液压与气动. 2022(01): 109-116 . 百度学术
    9. 刘超,谭稀岑,姚燕安,付志洋. 一种新型可变形轮腿式机器人的设计与分析. 机械工程学报. 2022(03): 65-74 . 百度学术
    10. 贾山,周向华,陈金宝,王永滨,赵建华,张胜. 可移动月球着陆器系统设计与实验验证. 深空探测学报(中英文). 2022(01): 29-41 . 百度学术
    11. 张燕. 基于模糊控制的智能移动机器人最优避障路线生成系统. 机械设计与制造工程. 2022(04): 86-90 . 百度学术
    12. 汪首坤,鲁帅,陈志华,刘道和,岳巍. 基于FFRLS-AEKF的6轮足机器人电池SOC估计. 北京理工大学学报. 2022(03): 271-278 . 百度学术
    13. 李昂,杨泓渊,雷小萌,宋凯文,千承辉. 基于等效连杆模型的六足机器人行进姿态闭环控制. 吉林大学学报(工学版). 2022(07): 1696-1708 . 百度学术
    14. 梁虎,罗强. 轮腿复合式结构机器人的机械系统设计与分析. 常熟理工学院学报. 2022(05): 49-54 . 百度学术
    15. 甄冒发,徐振峰,谢宇. 多自由度机器人惯性误差反馈融合闭环控制. 微电子学与计算机. 2020(12): 77-80 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  194
  • HTML全文浏览量:  493
  • PDF下载量:  555
  • 被引次数: 33
出版历程
  • 收稿日期:  2019-09-28
  • 刊出日期:  2020-09-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭