Research Status and Development Trend of Hydraulic Control System for Multi-legged Walking Robot
-
摘要: 针对多足步行机器人液压系统能量损失较大、结构相对单一及控制策略相对复杂等问题,从机器人液压系统和控制策略2个方面分析了多足步行机器人液压控制系统现状.将液压系统从泵源、液压执行器和液压控制结构3个方面分别阐述.从动力来源和油路结构介绍了泵源,从结构分类、一体化集成和特殊功能简述了不同液压执行器的应用,从阀控液压系统和泵控液压系统介绍了液压控制结构.从自由空间和约束空间两方面介绍了系统控制策略.多足步行机器人液压系统的发展方向包括小型化、轻量化、节能降耗、降低噪声和泄漏以及对控制策略的改进.Abstract: Problems of the hydraulic system of multi-legged walking robot are focused, such as large energy loss, relatively single structure, and complex control strategy. Status of the hydraulic control system of multi-legged walking robot is analyzed in two aspects, i.e. hydraulic system and control strategy. Firstly, the hydraulic system is separately elaborated from pump unit, hydraulic manipulator and hydraulic control structure. The pump unit is introduced from the power source and the structure of oil circuit. The applications of different hydraulic manipulators are briefly described according to the structure classification, the integration and the special functions. The hydraulic control structure is classified into the valve control system and the pump control system. Secondly, the system control strategies for the free space and the constrained space are introduced. The development directions of the hydraulic system of multi-legged walking robot include miniaturization, weight reduction, energy saving, noise suppression, leakage reduction, and improvement of the control strategy.
-
Keywords:
- multi-legged walking robot /
- hydraulic system /
- control strategy
-
-
[1] Zhuang H C, Gao H B, Deng Z Q, et al. A review of heavy-duty legged robots[J]. Science China Technological Sciences, 2014, 57(2):298-314.
[2] 丁良宏,王润孝,冯华山,等.浅析BigDog四足机器人[J].中国机械工程,2012,23(5):505-514. Ding L H, Wang R X, Feng H S, et al. Brief analysis of a BigDog quadruped robot[J]. China Mechanical Engineering, 2012, 23(5):505-514.
[3] Mosher R S. Test and evaluation of a versatile walking truck[C]//Proceedings of Off-Road Mobility Research Symposium. 1968:359-379.
[4] Waldron K, McGhee R. The adaptive suspension vehicle[J]. IEEE Control Systems Magazine, 1986, 6(6):7-12.
[5] Billingsley J, Visala A, Dunn M. Robotics in agriculture and forestry[M]//Springer Handbook of Robotics. Berlin, Germany:Springer-Verlag, 2008:1065-1077.
[6] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2):10822-10825.
[7] Boston Dynamics. LS3-Legged squad support systems[EB/OL].[2017-10-17]. http://www.bostondynamics.com/robot_ls3.html.
[8] Boston Dynamics. WildCat-The world's fastest quadruped robot[EB/OL].[2017-10-17]. http://www.bostondynamics.com/robot_cheetah.html.
[9] Boston Dynamics. Spot-Takes a kicking and keeps on ticking[EB/OL].[2017-10-17]. https://www.bostondynamics.com/spot.
[10] Semini C. HyQ-Design and development of a hydraulically actuated quadruped robot[D]. Genoa, Italy:University of Genoa, 2010.
[11] Khan H, Kitano S, Frigerio M, et al. Development of the lightweight hydraulic quadruped robot-MiniHyQ[C]//IEEE International Conference on Technologies for Practical Robot Applications. Piscatatway, USA:IEEE, 2015:1-6.
[12] Nonami K, Barai R K, Irawan A, et al. Hydraulically actuated hexapod robots:Design, implementation and control[M]. Berlin, Germany:Springer-Verlag, 2014.
[13] Doi T, Hodoshima R, Hirose S, et al. Development of a quadruped walking robot to work on steep slopes, TITAN XI (walking motion with compensation for compliance)[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscatatway, USA:IEEE, 2005:3413-3418.
[14] Kim T J, So B, Kwon O, et al. The energy minimization algorithm using foot rotation for hydraulic actuated quadruped walking robot with redundancy[C]//41st International Symposium on Robotics and 6th German Conference on Robotics. Piscatatway, USA:IEEE, 2010:1-6.
[15] Cho J, Jin T K, Park S, et al. JINPOONG, posture control for the external force[C]//International Symposium on Robotics. Piscataway, USA:IEEE, 2013:1-2.
[16] 柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf的设计与实现[J].机器人,2014,36(4):385-391. Chai H, Meng J, Rong X W, et al. Design and implementation of SCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014, 36(4):385-391.
[17] Li M T, Jiang Z Y, Wang P F, et al. Control of a quadruped robot with bionic springy legs in trotting gait[J]. Journal of Bionic Engineering, 2014, 11(2):188-198.
[18] 胡楠,李少远,黄丹,等.高负载四足机器人的步态规划与控制[J].系统仿真学报,2015,27(3):529-533. Hu N, Li S Y, Huang D, et al. Gait planning and control of quadruped robot with high payload[J]. Journal of System Simulation, 2015, 27(3):529-533.
[19] Gao J, Duan X, Huang Q, et al. The research of hydraulic qua-druped bionic robot design[C]//ICME International Conference on Complex Medical Engineering. Piscataway, USA:IEEE, 2013:620-625.
[20] Cai R, Chen Y, Hou W, et al. Trotting gait of a quadruped robot based on the time-pose control method[J]. International Journal of Advanced Robotic Systems, 2013, 10(2):148.
[21] 李昔学,留沧海,刘佳生,等.大型重载液压驱动六足机器人样机实验[J].机械设计与研究,2016,32(6):28-31. Li X X, Liu C H, Liu J S, et al. Experimental study on the prototype of a large heavy-duty hydraulic hexapod robot[J]. Machine Design & Research, 2016, 32(6):28-31.
[22] 吴娇杨,刘品,胡勇胜,等.锂离子电池和金属锂离子电池的能量密度计算[J].储能科学与技术,2016,5(4):443-453. Wu J Y, Liu P, Hu Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science & Technology, 2016, 5(4):443-453.
[23] Kumar S. Role of hydrogen in the energy sector[M]. Clean Hydrogen Production Methods. Berlin, Germany:Springer-Verlag, 2015:1-9.
[24] 荣学文.SCalf液压驱动四足机器人的机构设计与运动分析[D].济南:山东大学,2013.Rong X W. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Jinan:Shandong University, 2013. [25] Quan Z Y, Quan L, Zhang J M. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology[J]. Renewable & Sustainable Energy Reviews, 2014, 35(1):336-346.
[26] 孟延军,陈敏.液压传动[M].1版.北京:冶金工业出版社,2008:102.Meng Y J, Chen M. Hydraulic transmission[M]. 1st ed. Beijing:Metallurgical Industry Press, 2008:102. [27] 蒋云峰,许威,姚其昌.四足仿生移动平台车载液压动力系统设计[J].兵工学报,2014,35(1):80-85. Jiang Y F, Xu W, Yao Q C. Design of vehicle-mounted hydraulic power system of bionic quadruped mobile platform[J]. Acta Armamentarii, 2014, 35(1):80-85.
[28] Jin T K, Cho J S, Park B Y, et al. Experimental investigation on the design of leg for a hydraulic actuated quadruped robot[C]//International Symposium on Robotics. Piscataway, USA:IEEE, 2013:1-5.
[29] Wang J, Gao F, Zhang Y. High power density drive system of a novel hydraulic quadruped robot[C]//ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences. New York, USA:ASME, 2014:1-7.
[30] Krupp B T, Pratt J E. A power autonomous monopedal robot[C]//Sensors, and Command, Control, Communications, and Intelligence Technologies for Homeland Security and Homeland Defense V. 2006. DOI: 10.1117/12.666253.
[31] Chu Z, Luo J W, Fu Y L. Variable stiffness control and implementation of hydraulic SEA based on virtual spring leg[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2016:677-682.
[32] Vanderborght B, Albu-Schaffer A, Bicchi A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614.
[33] Dominguez G A, Kamezaki M, French M, et al. Development of a backdrivable magnetorheological hydraulic piston for passive and active linear actuation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,USA:IEEE, 2015:6551-6556.
[34] Dominguez G A, Kamezaki M, French M, et al. Modelling and simulation of a new magnetorheological linear device[C]//IEEE International Symposium on Robotics and Intelligent Sensors. Piscataway, USA:IEEE, 2015:235-240.
[35] Xue Y, Yang J H, Shang J Z, et al. Design and optimization of a new kind of hydraulic cylinder for mobile robots[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2015, 229(18):3459-3472.
[36] Xue Y, Yang J H, Shang J Z, et al. Energy efficient fluid power in autonomous legged robotics based on bionic multi-stage energy supply[J]. Advanced Robotics, 2014, 28(21):1445-1457.
[37] Guglielmino E, Semini C, Yang Y, et al. Energy efficient fluid power in autonomous legged robotics[C]//ASME Dynamic Systems and Control Conference. New York, USA:ASME, 2009:847-854.
[38] Guglielmino E, Semini C, Kogler H, et al. Power hydraulics-switched mode control of hydraulic actuation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2010:3031-3036.
[39] Zhang J, Xue Y, Yang J H, et al. Mobile robot hydraulic drive energy-saving circuit simulation based on the high-frequency switching valve[J]. Applied Mechanics & Materials, 2013, 278(1):568-575.
[40] Peng S, Branson D, Guglielmino E, et al. Simulated performance assessment of different digital hydraulic configurations for use on the HyQ leg[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2012:36-41.
[41] Al-Kharusi S, Howard D. The design and simulated performance of an energy efficient hydraulic legged robot[M]//Climbing and Walking Robots. Berlin, Germany:Springer-Verlag, 2005:495-501.
[42] Waldron K J, Vohnout V J, Pery A, et al. Configuration design of the adaptive suspension vehicle[J]. International Journal of Robotics Research, 1984, 3(2):37-48.
[43] Kaminaga H, Ono J, Nakashima Y, et al. Development of backdrivable hydraulic joint mechanism for knee joint of humanoid robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:1577-1582.
[44] Kaminaga H, Tanaka H, Yasuda K, et al. Screw pump for electro-hydrostatic actuator that enhances backdrivability[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2011:434-439.
[45] Huang J H, Quan L, Zhang X G. Development of a dual-acting axial piston pump for displacement-controlled system[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2014, 228(4):606-616.
[46] Cunha T B, Semini C, Guglielmino E, et al. Gain scheduling control for the hydraulic actuation of the HyQ robot leg[C]//ABCM Symposium Series in Mechatronics.[S.l.]:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM), 2010:673-682.
[47] Ke X, Lin L, Qing W, et al. Design of single leg foot force controller for hydraulic actuated quadruped robot based on ADRC[C]//Chinese Control Conference. Piscataway, USA:IEEE, 2015:1228-1233.
[48] 韩京清.从PID技术到"自抗扰控制"技术[J].控制工程,2002,9(3):13-18. Han J Q. From PID to active disturbance rejection control[J]. Control Engineering of China, 2002, 9(3):13-18.
[49] Boaventura T, Buchli J, Semini C, et al. Model-based hydraulic impedance control for dynamic robots[J]. IEEE Transactions on Robotics, 2015, 31(6):1324-1336.
[50] Focchi M, Guglielmino E, Semini C, et al. Control of a hydraulically-actuated quadruped robot leg[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:4182-4188.
[51] Bech M M, Andersen T O, Pedersen H C, et al. Experimental evaluation of control strategies for hydraulic servo robot[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2013:342-347.
[52] Bu F P, Yao B. Observer based coordinated adaptive robust control of robot manipulators driven by single-rod hydraulic actuators[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2000:3034-3039.
[53] Bu F P, Yao B. Desired compensation adaptive robust control of single-rod electro-hydraulic actuator[C]//American Control Conference. Piscataway, USA:IEEE, 2001:3926-3931.
[54] Mohanty A, Yao B. Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3):567-575.
[55] Mattila J, Koivumaki J, Caldwell D G, et al. A survey on control of hydraulic robotic manipulators with projection to future trends[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):669-680.
[56] Semini C, Barasuol V, Boaventura T, et al. Towards versatile legged robots through active impedance control[J]. International Journal of Robotics Research, 2015, 34(7):1003-1020.
[57] Boaventura T, Medrano-Cerda G A, Semini C, et al. Stability and performance of the compliance controller of the quadruped robot HyQ[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:1458-1464.
[58] Irawan A, Nonami K. Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain[J]. Journal of Field Robotics, 2011, 28(5):690-713.
[59] Irawan A, Nonami K, Ohroku H, et al. Adaptive impedance control with compliant body balance for hydraulically driven hexapod robot[J]. Journal of System Design and Dynamics, 2011, 5(5):893-908.
[60] Montes H, Armada M. Force control strategies in hydraulically actuated legged robots[J]. International Journal of Advanced Robotic Systems, 2016, 13(2):50.
[61] Koivumaki J, Mattila J. Stability-guaranteed force-sensorless contact force/motion control of heavy-duty hydraulic manipulators[J]. IEEE Transactions on Robotics, 2015, 31(4):918-935.
[62] Koivumaki J, Mattila J. Stability-guaranteed impedance control of hydraulic robotic manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):601-612.
[63] 巴凯先,孔祥东,朱琦歆,等.液压驱动单元基于位置——力的阻抗控制机理分析与试验研究[J].机械工程学报,2017,53(12):172-185. Ba K X, Kong X D, Zhu Q X, et al. Position/force-based impedance control and their experimental research on hydraulic drive unit[J]. Journal of Mechanical Engineering, 2017, 53(12):172-185.
[64] Yang H Y, Pan M. Engineering research in fluid power:A review[J]. Journal of Zhejiang University:Science A, 2015, 16(6):427-442.
[65] Khan H, Kitano S, Gao Y, et al. Development of a lightweight on-board hydraulic system for a quadruped robot[C]//The Fourteenth Scandinavian International Conference on Fluid Power. Linköping, Sweden:Linköping University Electronic Press, 2015:1-11.
[66] Raade J M, Amundson K R, Kazerooni H. Developmentof hydraulic-electric power units for mobile robots[C]//Proceed-ings of ASME International Mechanical Engineering Congress and Exposition. New York, USA:ASME, 2005:27-34.
[67] Alfayad S, Ouezdou F B, Namoun F, et al. High performance integrated electro-hydraulic actuator for robotics-Part I:Principle, prototype design and first experiments[J]. Sensors and Actuators A:Physical, 2011, 169(1):115-123.
[68] Alfayad S, Ouezdou F B, Namoun F, et al. High performance integrated electro-hydraulic actuator for robotics-Part Ⅱ:Theoretical modelling, simulation, control & comparison with realmeasurements[J]. Sensors and Actuators A:Physical, 2011, 169(1):124-132.
[69] Semini C, Goldsmith J, Manfredi D, et al. Additive manufacturing for agile legged robots with hydraulic actuation[C]//Interna-tional Conference on Advanced Robotics. Piscataway, USA:IEEE, 2015:123-129.
[70] El Asswad M, Tayba A, Abdellatif A, et al. Development of lightweight hydraulic cylinder for humanoid robots applications[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017. DOI: 10.1177/0954406217731794.
[71] Du C, Plummer A R, Johnston D N. Performance analysis of a new energy-efficient variable supply pressure electro-hydraulic motion control method[J]. Control Engineering Practice, 2017, 60(1):87-98.
[72] Guglielmino E, Cannella F, Semini C, et al. A vibration study of a hydraulically-actuated legged machine[C]//ASME International Mechanical Engineering Congress and Exposition. New York, USA:ASME, 2010:1077-1083.
[73] Amundson K, Raade J, Harding N, et al. Development of hybrid hydraulic-electric power units for field and service robots[J]. Advanced Robotics, 2006, 20(9):1015-1034.
[74] Yang Y S, Semini C, Guglielmino E, et al. Water vs. oil hydraulic actuation for a robot leg[C]//International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2009:1940-1946.
[75] Stojanovic V, Nedic N. A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform[J]. Journal of Optimization Theory and Applications, 2016, 168(1):332-347.
[76] Wang D, He H B, Liu D R. Adaptive critic nonlinear robust control:A survey[J]. IEEE Transactions on Cybernetics, 2017, 47(10):3429-3451.
[77] Lu S M, Li D J. Adaptive neural network control for nonlinear hydraulic servo-system with time-varying state constraints[J]. Complexity, 2017, 2017(8):1-11.
计量
- 文章访问数: 155
- HTML全文浏览量: 736
- PDF下载量: 496