一种基于CLM的服务机器人室内功能区分类方法

A CLM-Based Method of Indoor Affordance Areas Classification for Service Robots

  • 摘要: 基于CLM(无码本模型)提出一种规避码本的室内功能区表示与建模方法.首先,在灰度级图像的基础上提取SURF(加速鲁棒特征)描述子;然后,运用空间金字塔方法将图像分成规则区域,在向量空间引入高斯流形,将每个区域用单高斯模型表示,并将其联合构成混合高斯模型以表示整幅图像;最后,将图像的高斯模型与改进的SVM(支持向量机)分类器联合使用,实现室内功能区的分类.在Scene 15数据集上的实验结果表明,本文方法相较于传统的构建码本方式在分类识别精度上提升约20%,同时对方向变化、光照不均匀等情况具有较好的鲁棒性,有效提升了服务机器人对室内功能区的认知能力.

     

    Abstract: A representation and modeling method of indoor affordance areas based on CLM (codebookless model) is proposed to avoid using codebook. Firstly, multi-scale SURF (speeded-up robust feature) descriptors are extracted on grey-scale image. Then, the image is divided into some regular regions using the spatial pyramid method. By introducing Gaussian manifolds into vector space, each region is denoted as a single Gaussian model, and the mixed Gaussian model is combined to represent the whole image. Finally, the Gaussian model and the modified SVM (support vector machine) classifier are utilized to classify the indoor affordance areas. The experimental results on Scene 15 datasets show that the proposed method improves the classification accuracy by about 20% compared with the traditional codebook construction methods, is more robust to direction changes and uneven illumination, and effectively enhances the ability of service robots to cognize indoor affordance areas.

     

/

返回文章
返回